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Abstract 

 

      The concept of derivations on   rings, prime   rings and semi-prime   rings is being studied here. 

A generalization to these concepts was also introduced, the conditions that makes these rings commutative 

were also studied. Finally, the   left R
 modules were introduced as well as the concept of derivations on 

left   modules.                                                                                                                                        
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Introduction 

 An extensive generalized concept of classical ring is the notion of a gamma ring. As an emerging 

field of research, the research work of classical ring theory opposed  to the gamma ring theory has been 

drawn interest of many algebraists and prominent mathematicians over the world to determine many basic 

properties of gamma ring and to enrich the world of algebra. The different researchers on this field have 

been doing  significant contributions to this field. In recent years, a large number of researchers are engaged 

in increasing the efficiency of the results of gamma ring theory over the world. 

 The concept of a  ring was introduced by Nobusawa  15  as a generalization of ring in 1964. 

Barnes  4  slightly weakened the conditions in the definition of  ring in the sense of Nobusawa. After the 

study of  rings by Nobusawa  15  and Barnes  4  many researchers have done a lot of work and have 

obtained some generalizations of the corresponding results in ring theory ( see  5 ,  10 ,  13 ,  22  and 

references therein ). They obtain large number of important basic properties of  rings in various ways and 

determined some more remarkable results of  rings. We start with the following necessary definitions. 

In this thesis   denotes a  ring in the sense of Barnes  4 .  

 This thesis consists of five chapters: in chapter one we have reviewed some known definitions, some 

necessary lemmas and theorems which will be used in the next chapters, some basic definitions are 

presented which can be found in the indicated reference, we start our study with definition of a  ring, 

several examples on  rings, definition of subring and definition of center of  ring. In section two we 

give some results on ideal of  ring. In section three we give the definition of prime ideal and prime 

rings, some theorems and some lemmas about prime  rings. In section four we give the definition of 

semi-prime ideal and semi-prime  rings, some theorems and some lemmas about semi-prime  rings. 

In section five we introduce and study the notion of modules over a fixed  ring. 

 Chapter two consists of three sections: in section one we define a derivation on a  ring, Jordan 

derivation on a  ring, generalized derivation on  ring, Jordan generalized derivation on a  ring and 

some theorems and results on Jordan generalized left derivations in  rings. In section two we define a 

 semi-derivation, generalized inner derivation,  homomorphism and projective product of  rings, 

some theorems and results on  derivations in the projective product of  rings. In section three we 

define reverse derivation on  ring, generalized reverse derivation on  ring, Jordan generalized reverse 

derivation on  ring and Jordan generalized triple reverse derivation on  ring, several examples and 

theorems on Jordan generalized reverse derivations on  rings. 

 Chapter three consists of three sections: in section one we prove that a prime ring  is 

commutative if   is a generalized derivation on  with an associated non-zero derivation D  on such 

that   is centralizing and commuting on a left ideal J  of . In section two we define a permuting tri-

additive and the trace of  a permuting tri-additive mapping, some theorems and results on permuting tri-

derivation in prime  rings. In section three we introduce the concept of triple higher derivation on a 

prime  ring  and prove that every  Jordan triple higher derivation on a prime  ring   of 

characteristic different from two is a triple higher derivation on   and finally, it is shown that every  Jordan 

triple higher derivation is a higher derivation on  . 
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 Chapter four consists of four sections: in section one, the purpose of this section is to notions of 

generalized I derivation and generalized reverse I derivation on  rings and to prove some remarkable 

results involving these mapping. In section two we presents the definition of orthogonal reverse derivations; 

some characterizations of semi-prime  rings are obtained by using of orthogonal reverse derivations. We 

also investigate conditions for two reverse derivations to be orthogonal. In section three we extend the 

existing notions of derivations and generalized derivations in semi-prime  ring. In section four we study 

and investigate some results concerning a permuting tri-derivation  on non-commutative 3-torsion free 

semi-prime rings . Some characterizations of semi-prime rings are obtained by means of 

permuting tri-derivations. 

 Chapter five consists of two sections: in section one we present and study the concepts of a left 

module, left derivation of a left module. In section two we will define generalized left 

derivation and generalized Jordan left derivation.   
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Chapter One 

Preliminaries 

In this chapter we present some definitions and theorems on  rings, ideal of  rings, prime 

ideal, prime  rings, semi-prime ideal, semi-prime  rings and gamma modules  which will be needed in 

the next chapters. 

1.1 Ring 

 The concept of a  ring (was first introduced by Nobusawa  15 ) as a generalization of rings. 

Barnes  4
 
weakend slightly the conditions in the definition of  ring in the sense of Nobusawa. Barnes 

obtain large number of important basic properties of  rings in various ways and determined some more 

remarkable results of  rings. We start with the following necessary definitions. 

Definition 1.1.1:
  4

 
Let   and   be additive abelian groups. If there exists a mapping  , , yx  x y  

of  , satisfying the following conditions: 

(i) ;x y   

(ii)  yx z x z y z     ,  x z x z x z      ;   ;x y z x y x z      

(iii)    yx z x y z     for all , ,x y z and ,   , 

then   is called a  ring. 

Every ring   is a  ring with  . However a  ring need not be a ring and many notions on the 

ring theory are generalized to the  ring. i.e. gamma rings are more general than rings. 

Examples 1.1.2: 

1. Let R  be an integral domain with the identity element 1. Take  1 2 R   and 

1
:  is an integer

0

n
n

  
    

  
 . Then   is a  ring. If we assume that   , :a a a R    , 

then it is easy to verify that   is also a  ring(in fact,   is a subring of  ). 

2. (Matrix Gamma Ring): Let   be a  ring. We denote the set of m n  matrices with entries from 

  and the set of n m  matrices with entries from   by m n  and n m  , respectively, then m n  is 

a n m  ring with the multiplication defined by 

      , where ij ij ij ij ij ip pq qj

p q

x y c c x y   . 

For example, let R  be any ring,  and let : ,  ,  ,  ,  ,  

a x

b y a b c x y z R

c z

  
  

    
  
  

 , 
0

: ,
0 0 0

l m
l m R

  
    

  
 . 

Then 3 2  is a 2 3  ring. 
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Remark 1.1.4: If m n  , then
 n  is a n   ring . 

Definition 1.1.5:
  28   An additive subgroup S  of a  ring   is called  subring of   if S S S  . 

Example 1.1.6:  

Let R  be any ring, 0 0 0 : , ,

0 0 0

a b c

a b c R

  
  

    
  
  

 and 

0 0

0 0 0 :

0 0 0

R





  
  

    
  
  

  then   and   are both 

abelian groups under matrix addition.  

Now it is easy to show that   is a  ring under matrix multiplication, also we can prove that   is 

subring of  . 

Definition 1.1.7:
  4  A  ring   is said to be commutative  if x y y x   for all ,x y  and  . 

Definition 1.1.8:
  27

 
 Let   be a  ring. Then the set 

   :  for all  and Z x x y y x y         is called the center  of the  ring  . 

Remark 1.1.9: If   is a  ring, then  Z M  is a  subring of  . 

Definition 1.1.10:
  27

 
Let   be a  ring. Then  ,x y x y y x


    is called the commutator of x  and 

y  with respect to  , where ,  and x y   . 

The following commutator identities follow easily from the above definition  

(i)        , , , ,
z

x y z x z y x y x y z
  

       and 

(ii)        , , , ,  , for all , ,  and , .
x

x y z x y z y z y x z x y z
  

            

 

Remarks 1.1.11: 

1) Under the assumption: 

        x y z x y z     for all , ,  and ,x y z    . 

 The above two identifies reduce to  

     , , ,x y z x z y x y z
  

     and      , , ,  x y z x y z y x z
  

    ,  

which we shall use extensively. 

 

2)   is called a  ring with unit, if there exist element 1  and 0   such that for any 

y  , 0 01 1y y y   . 

3) If A  and B  are subsets of the  ring   and  , we denote by A B  the subset of   

consisting of all finite sums of the form 
1

n

i i i

i

a b


  where  , ,i i ia b A B    . 
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For singleton subsets we  abbreviate  this notation, for example  a B a B   . 

1.2 Ideal of Ring 

 In this section, we introduce the notions of ideals and nilpotent  rings. 

Definition 1.2.1:
  22

 
 Let   be a  ring. A subring I  of   is an additive subgroup which is also a 

ring. An additive subgroup I  of   is called a left(right) ideal of   if  I I I I   , where 

 : , ,I x a x a I      . If I  is both a left and a right ideal, then I  is called an ideal of  , or 

ideal I of  . 

We denote an ideal I  in   by I  . An ideal I   is called a proper ideal, if I

 . For each subset 

S of the  ring  , the smallest ideal containing S  is denoted by S  and is called the ideal generated  

by S . 

If S  is finite, S  is called  finitely generated . 

For each a  of a  ring  the smallest left ideal  containing a   is  called  the  principal  left ideal 

generated  by a  and is denoted by 
l

a or 

 

 
1

: 0 , , ,
n

j j j j

j

a ma x a m n x S  



 
      
 

 . 

Similarly, we define the principal right ideal generated  by a , by 
r

a or 

 
1

: 0 , , ,
n

i i i i

i

a ma a y m n y S  



 
      
 

  . 

The principal two-sided ideal generated  by a  is denoted by a , and is defined by 

 
1 1 1

z : 0 , , , , , , ,  and , , ,
p qs

k k t t j j j j k t j j k t j j

k t j

a ma a a u a v m p s q z u v S          

  

 
        
 

  

where   is the set of all positive integers.  

Let I  be an ideal of a  ring  . If for each ,a I b I   in the factor group I , and each  , 

we define    a I b I a b I     , then I  is a ring which we shall call the  residue class ring 

of   with respect to I . 

Example 1.2.2: Let R  be a ring and  ,  be the group of integer numbers, we put  2 2 R   and 

 2 2  , then   is a  ring. We use the usual addition and multiplication on matrices of  . 

Let : ,
0 0

a b
I a b R

  
   

  
, clearly I  is a right  ideal of  but not a left  ideal of  . 
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Definition 1.2.3:
  25

 
 Let  be a  ring. An element x  of   is called nilpotent  if for some   , there 

exists a positive integer  n n   such that     0
n

n times

x x x x x x    



  . 

Definition 1.2.4:
  25   An ideal A  of a  ring   is called nilpotent if  n    s.t

    0
n

n times

A A A A A A



       . 

Theorem 1.2.5:
  26

 
 Let   be a  ring and let 1N  and 2N  be two nilpotent left (right) ideals. Then 

1 2N N  is a nilpotent left (right) ideal. 

Proof: Let   be a  ring. Let 1N  and 2N  be two nilpotent left ideals of  . Then there exist two least 

positive integers q  and n  such that 

 

 

   1 1 1 1 1 1

times

0
q

q

N N N N N N



      

 

and  

   2 2 2 2 2 2

 n-times

0
n

N N N N N N        

Then 1 2N N  is also a left ideal of  . Every element of     
1

1 2 1 2

q n

N N N N
 

    is a sum of products 

1 2 2q nx x x      in which either at least  1s  factors belong to 1N  or  1r   factors belong to 2N . In 

the former case, the above product may be written as 

       
1 1 1 2 2 2 3 11 2 1 2 1 2 1 2 ,

s s si i i i i i i i i ix x x x x x x x x x x x                
      where 

1 2 1 1, , ,
si i ix x x N

  and 1 1s n   . Each group in parenthesis belongs to 1N  , since 1N  is a left ideal of  . 

However, the product of any 1s   elements of 1N  is 0  and so the above product is 0 . A similar argument 

holds when at least  1r   factors belong to 2N . 

Thus            
 

 
1

1 2 1 2 1 2 1 2 1 2 1 2

1

0
s n

s n times

N N N N N N N N N N N N
 

  

             Hence 

 1 2N N  is nilpotent. Thus the theorem is proved.   

Corollary 1.2.6: Let   be a  ring and let 1 2, , , nN N N be nilpotent left (right) ideals in  . Then 

N  is a nilpotent left (right) ideal in  . 

Theorem 1.2.7 :
  26   Let A  be a nilpotent left (right) ideal in a  ring  . Then A  A  is a 

nilpotent ideal in . 
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Proof: Since A  is a left ideal, so is A , and since   is a right ideal then so is A . Thus A  is an 

ideal in  . If   0
n

A A  , then     
n

A A    

       

     

    

  

 

1

1

0

0

n times

n

n

n

A A A A

A A A A

A A A

A A A

A A







        

           

     

   

  

 



 

Hence A  is nilpotent .   

1.3 Prime Ideal And Prime Ring 

In this section we present some definitions and theorems on prime ideal and prime  

 rings. 

Definition 1.3.1:
  27

 
 An ideal P  of a  ring  is said to be prime if for any ideals A  and B  of  , 

A B P   implies A P  or B P . 

Definition 1.3.2:
  14

 
 A  ring   is said to be prime if the zero ideal is prime . 

Theorem 1.3.3:
  14  If   is a  ring, the following conditions are equivalent: 

(i)   is a prime  ring. 

(ii) if  ,  and 0 ,  then 0 or 0.a b a b a b      

(iii) if  and a b are principal ideals in   such that  0a b  then  0 or 0.a b   

(iv)   If A  and B  are right ideals in   such that  0A B  , then  0A   or  0 .B   

(v)   If A  and B  are left ideals in   such that  0A B  , then  0A   or  0 .B   

Proof:  (i)  (ii) 

Assume that ,a b  are non-zero elements in   therefore the ideals generated by a  and b are non-

zero ideals, thus  0a b  . But  0 .a b a b a b       

Therefore,  0a b  , but
 

 0 , , .a b a b      . 

Thus, either 0 or 0.a b   
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(ii)  (iii) 

Since  0a b  . But  0 .a b a b a b       

Then  0 , , .a b a b     by (ii) either 0 or 0.a b   

(iii)  (iv) 

Let a A  and b B  then  0a b A B    . Therefore  0a b  . Now, since A  is right ideal, then 

 0A B A B    , then  0 , , .a b a b     Now we claim that  0a b  . Assume not 

 0a b  . But  0a b a b    .  

Therefore  0a b  , contradiction 

With (i). Then  0a b  and by assumption (iii) either  0,  0a A   

or  0,B 0b   . 

(iv)  (v)    

Let a A , b B  and  0a b  . Suppose that  0a b  . If not, then  0a b  , but 

 0a b a b    , we get  0a b  , which contradiction with (i), but ,  a b  are right ideal, then by 

(iv), we get either    0 0, 0b b B    or    0 0,A 0 .a a     

(v)  (i) 

We want prove that  0  is prime ideal. 

Let A  and B  be ideals in   with  0A B  , but A  and B  are left ideal, then by (v) either  0A   or 

 0 .B     

 We say that an element a  in a   ring   centralizes a non-zero right(left) ideal I  of   if  

   ,   , ,a x Z x I


      .  

Lemma 1.3.4:
  18  Let   be a prime  ring and suppose that a  centralizes a non-zero right ideal of 

 . Then  a Z   . 

Proof: Suppose that a  centralizes a non-zero right ideal A  of  . If ,x r A  , then r x A   for every 

 , hence  a r x r x a    , for ,   . But a r r a  , for  , we thus get that 

  0r a x x a     which is to say that  , 0r a x


   , for all x  and ,   .  

Since   is prime and 0A  , we conclude that  , 0a x

  for all  ,x   , hence  a Z  .  
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Lemma 1.3.5:
  18  Let    be  any   ring  satisfying  the  condition   a b c a b c      for   all 

, ,a b c  and ,   , and let u . Then the set   : , 0,  for all  and ,V a a u x x


        

is an ideal of  . 

Proof: It is clear that V  is a left ideal of  . Now, we show that V also is a right ideal. Let a V  and 

,  x r . For all , ,    , we have     0a u r x r x u        . The Jacobi identity for the 

commutators gives,      a u r x r x u u r r u x r u x x u               , then using the condition, we 

get 

       0 , ,a u r x r x u a u r x a r u x
 

               

That is,  , 0a r u x


   , for any , ,    . Hence a r V  and V is a right ideal of  .  

Definition 1.3.6:
  28  Let   be a  ring and I  be a subset of  . The subset 

   : 0lAnn I a a I     of   is called a left annihilator of I . A right annihilator  rAnn I  is defined 

similarly. If I is a non-zero ideal of   then    l rAnn I Ann I  and we denote it by  Ann I . 

Lemma 1.3.7:  Let    be a prime  ring  satisfying  the condition a b c a b c     for all , ,a b c  and 

,   , and suppose that 0 u   satisfies  , 0,  for all  and ,a u x x


     ,Then  u Z   . 

Proof: By Lemma 1.3.5, 

  : , 0,  for all  and ,V a a u x x


        is an ideal of  . Since,   is prime and 

ru x x u Ann V    we have 0u x x u   , for all ,x   , hence   u Z  .  

Note: Let G  be an additive group. We shall denote by ,m nG  the additive group of all m n  matrices over the 

group G . For 1 ,  1 ,i m j n     and ,a G  let ijaE  denote the matrix having a  at the thi row and thj  

column, and 0  elsewhere. 

Theorem 1.3.8:
  14   If   is a  ring, the matrix ring ,m n  is a prime ,n m  ring if and only if    is a 

prime  ring. 

Proof: Let us prove that if   is not prime, then ,m n  is not prime. If   is not prime, there exist non-zero 

elements a  and b  of   such that 0a b  . Then, we have, for example, 11 , , , 11 0n m m n n maE bE     with 

11aE  and 11bE  non-zero elements of  ,m n . Hence, ,m n  is not prime. Conversely, suppose that ,m n  is not 

prime, and hence that there exist non-zero matrices 
,

ij ij

i j

a E and 
,

ij ij

i j

b E  such that 

, , ,

, ,

0ij ij n m m n n m ij ij

i j i j

a E b E
   

      
   
  . Let , ,  and p q r s  be fixed positive integers such that 

rs0 and 0pqa b  . As a special case of the preceding equation, we find that for each x , each ,    , 
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, ,

0ij ij qp ps sr ij ij iq rj ij

i j i j

a E E xE E b E a x b E   
   

    
   
   . 

In particular, the  ,p s  element must be zero, that is, 0pq rsa x b   .  

Since this is true for every x  and every ,  , we have 0pq rsa b  , and   is not prime. 

This completes the proof.  

Definition 1.3.9:  14  ( homomorphism). Let i  be a i  ring for 1,  2,i  an ordered pair  ,   of 

mappings is called a homomorphism of  1  onto 2  if it satisfies the following properties :  

1.   is a group homomorphism from 1  onto 2 . 

2.   is a group isomorphism from 1  onto 2 . 

3. For every 1 1, ,  ,x y           x y x y      . 

Remarks 1.3.10:
  14  

1. The kernel of the homomorphism  ,   is defined to be   : 0K x x   . 

2. It is easy to show that K  is an ideal of  . 

3. If   is a group isomorphism, that is, if K 0 , then  ,   is called an isomorphism from the 1 

ring 1  onto the 2  ring 2 .  

4. In the special case where 1 2   , a  homomorphism from 
1  to 2  is a map   

  from 
1  to 2  such that      x y x y      and  

     x y x y     for all 1,x y  and all
   , where the second map   is taken to be the 

identity.   

Example 1.3.11: Let   be a homomorphism from a ring R  into itself . Let  1 2 R   and 

:  is an integer number
0

m
m

  
    

  
. Then   is  ring, where we use usual addition and multiplication 

on matrices of  . Let :   be the additive map defined by 
 

       , ,a b a b   , for all  ,a b  , then   is a  homomorphism on the  ring  . 

Example 1.3.12:  14  Let   be a  ring, and I  be an ideal in  . Then the ordered pair  , i of 

mappings, where I  defined by  x x I    for all x  , and i  is the identity mapping of  , 

is a  homomorphism called  the natural homomorphism from   onto I . 

Theorem 1.3.13: If  ,   is a homomorphism from a 1  ring 1  onto a  2  ring 2  with kernel K , 

then 1 K and 2  are isomorphic. 
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Proof: Define an ordered pair  ,f   where 1 2:f K   , by    f x K x   for all 1x . Then f  

is will defined and,  

(1)
 f  is group homomorphism, since 

                .f x K y K f x y K x y x y f x K f y K               
 

(2) f  is onto since if we pick 2z  then as   is onto, there exists 1x , such that  x z   then there 

exists 1x K K  such that    f x K x z    .
 

(3) f  is one-one since for  x K Ker f  where 1x  then
 

   0 f x K x   , then  x Ker K  , 

i.e. x K K  , thus f  is one-one.  

(4)                f x K y K f x y K x y x y              

                       .f x K f y K      

Lemma 1.3.14:  14  Let  , i
 
be a homomorphism of a  ring   onto a  ring N , with kernel K . 

Then each of the following is true:  

(1) If I  is an ideal (right ideal) in , then I  is an ideal (right ideal) in N . 

(2) If J  is an ideal (right ideal) in N , then 1J   is an ideal (right ideal) in   which contains 

K . 

(3) If I  is an ideal (right ideal) in   which contains K , then   1I I    . 

(4) The mapping I I   defines a one-one mapping of the set of ideals (right ideals) in   

which contains K  onto the set of all ideals (right ideals) in N . 

Theorem 1.3.15:  14  If P  is an ideal in the  ring  , then the  residue class ring P  is a prime 

 ring  if and only if P  is a prime ideal in  . 

Proof: Let P  be prime and ,  A B  be ideals of   such that A B P  . Let  , i  be the natural 

homomorphism from   onto P . Then by Lemma 1.3.14 , A  and B  are ideals of P  such that 

 0A B   . Since P  is prime, it follows that  0A  or  0B  , that is A P  or .B P  Thus 

P  is a prime ideal in  . 

Conversely, let P  be a prime ideal in  . Lemma 1.3.14 shows that each ideal in P  is of the 

form A P , where A  is an ideal in   which contains P  . Thus we may assume that A P , B P  to be 

ideals of P  such that      0A P B P  , which implies A B P  . Then by the primeness of P  we 

have A P  or B P . Hence A P  or B P  and so  0A P   or  0B P  . This completes the proof. 
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Lemma 1.3.16: If I  is an ideal in the  ring  , then the matrix ,n m  ring  
,m n

I  is isomorphic to the 

,n m  ring , ,m n m nI . 

Proof: Let   be a mapping of the ,n m  ring  
,m n

I to the ,n m  ring , ,m n m nI  such that 

    ,ij ij m nx I x I   . Clearly,    is a group isomorphism from  
,m n

I  onto , ,m n m nI . Let i  be an 

identity mapping from ,n m  onto ,n m . By the definition of multiplication of the  residue class ring, we 

have that 

     ij ij ij ijx I y I z I      
 

, where      ij ij ij ijz x y  

        ,ij ij ij m nx y I   

         , ,ij m n ij ij m nx I y I     
   

 

         ij ij ijx I i y I     . 

This shows that  , i  is an isomorphism of  
,m n

I  onto , ,m n m nI .  

Definition 1.3.17: A  ring   is said to be right(left) strongly prime  if for each 0 a  , there exist 

finite subsets F and H  of   and  respectively such that for any  , 0 0b a f b b f a       for all 

, ,H f F     implies 0b  .  

A  ring   is said to be strongly prime  if it is both left and right strongly prime . 

Example 1.3.18: Let    1,2 2,1,       and  , 0a b    . 

 Choose , , , ,c d e f g and l  such that ac bd   and eg fl  . Consider   ,F e f  and 

,
c g

H
d l

    
     

    
.  

Then it can be easily checked that   is right and left strongly prime  ring .  

Therefore   is a strongly prime  ring .   
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1.4 Semi-Prime Ideal And Semi-Prime Ring 

In this section we present some notions and known results which will be used in the  

sequel. 

Definition 1.4.1:  27  A  ring   is said to be 2-torsion  free if 2 0x   implies 0x   for all x . A  

 ring   is n-torsion free, where n  is a positive integer, if 0 0, .nx x x      

Definition 1.4.2:  27  An ideal I  of a  ring   is said to be semi-prime if for any ideal A  of  , 

A A I   implies A I  . 

Definition 1.4.2:  27  A  ring   is said to be semi-prime if  0 ,  a a a    implies 0a  .  

Lemma 1.4.3:  11  Suppose   is a semi-prime   ring such that 

,  for all , , ,  and ,x y z x y z x y z        . And suppose that the relation 0a x b b x c     holds 

for all x , some , ,a b c  and ,   . Then   0a c x b    is satisfied for all x  and ,   . 

Proof : Putting  in the relation x x b y  0 a x b b x c         1.4.1   

We have   0a x b y b b x b y c                1.4.2   

On the other hand, a right multiplication by y b   of  1.4.1  gives
 

0a x b y b b x c y b                1.4.3    

Subtraction  1.4.3  from  1.4.2 , we have
 

  0b x b y c c y b               1.4.4    

Putting x y c x   in  1.4.4 gives
 

  0b y c x b y c c y b                1.4.5    

Left multiplication by c y   of  1.4.4  gives 

   0c y b x b y c c y b                 1.4.6    

Subtracting  1.4.6  from  1.4.5 , we obtain     0b y c c y b x b y c c y b            , which 

gives 

,  and ,b y c c y b y              1.4.7   Therefore, 

b x c   can be replaced by c x b   in  1.4.1 , which gives 0a x b c x b      

i.e.   0a c x b   . Hence, the proof is complete.    
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The following lemmas will be used in proving theorem 4.3.5. 

Lemma 1.4.4:
  7  Let   be a 2-torsion free semi-prime  ring. If 0x x   for all x  and ,  then 

 x Z  . 

Proof : We have 0x x   for all x  and  . Replacing x  by x y , we get 0x y y x    for all 

,  ,  x y   . 

Right-multiplying by x  we obtain 0x y x    for all , , ,x y    . Replacing y  by y z  and 

right-multiplying by y  we get 0x y z x y      for all , , , , ,x y z     . Since   is a semi-prime  

 ring, we obtain 0x y   for all , ,x y   . By the same method, we get 0y x   for all

, ,x y   , subtracting  we obtain  , 0x y

 , for all ,  ,  x y   . Then  x Z   for all x  

and  .  

Lemma 1.4.5:
  6  Let   be a 2-torsion free semi-prime  ring. If ,a b  such that 

0a m b b m a       for all m , then 0a m b b m a      . 

Proof : Let m  and m  be two arbitrary elements of  . Then by using a m b b m a      , we obtain 

     a m b m a m b b m a m a m b                

             a m a m b m b        

               a m b m a m b        . 

Therefore, we get     2 0a m b m a m b       .  

Since   is a 2-torsion free semi-prime  ring, then 0a m b   for all m .  

Lemma 1.4.6:
  29  Let   be a semi-prime  ring and I a non-zero ideal of  . Then l rAnn I Ann I . 

Proof :  : 0rAnn I a I a    is a right ideal of  , that is,  r rAnn I Ann I . Similarly for lAnn I  

we can write  l lAnn I Ann I  . Since  is a semi-prime  ring,    0rAnn I I  , so r lAnn I Ann I

. In the same manner      0l lI Ann I I Ann I     give us that    0lI Ann I   as  is a semi-prime  

ring. That is, l rAnn I Ann I . So l rAnn I Ann I .  

Lemma 1.4.7:
  29  Let  be a semi-prime   ring and I a non-zero ideal of  . Then  

(i) AnnI  is an ideal of  . 

(ii)    0AnnI I  . 

Proof : (i) Let a AnnI . So by Lemma 1.4.6 0a I I a    . If ,a b AnnI , then 

  0x a b x a x b       and   0a b x a x b x       for all x I and  . So we have 

a b AnnI  .  
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For all a AnnI , x I , m  and ,   ,     0a m x a m x     and 

    0 0x a m x a m m       , and so we get  AnnI AnnI . Similarly we get  AnnI AnnI   

     (ii) Since  AnnI I  is an ideal of  and      AnnI I AnnI I     0I AnnI  , we 

have        0AnnI I AnnI I   and since   is a semi-prime  ring we get    0AnnI I  .  

Lemma 1.4.8:
  29  Let   be a 2-torsion free  semi-prime  ring, I a non-zero ideal of  and ,a b . 

Then the following are equivalent , 

(i) 0a x b    for all x I  and ,   . 

(ii) 0b x a    for all x I  and ,   . 

(iii) 0a x b b x a      for all x I  and ,   . 

If one of the conditions is fulfilled and  0lAnn I  , then 0a b b a    for all  , moreover if  is 

a prime  ring then 0a   or 0b  . 

Proof : (i)  (ii) 

       Suppose that 0a x b    for all x I  and ,   . Then 0b x a y b x a       for all ,x y I  and 

, , ,    . By writing y m   for y , we get 0b x a y m b x a          where m  and   , hence 

0b x a y m b x a y          . Now since  is a semi-prime  ring we have 0b x a y    for all ,x y I  

and , ,    . That is lb x a Ann I   . Therefore    0lb x a Ann I I     by Lemma 1.4.6 and 

Lemma 1.4.7 . 

(ii)  (i) This can be done similarly . 

(iii)  (i) Suppose that 0a x b b x a      for all x I  and ,   . In the above equation, 

writing x b m a x      for x , then  

                      
   a x b m a x b b x b m a x a                 

                

  

   

   

b x b m a x a

a x b m b x a

a x b m a x b

     

     

     

  

 

  

 

Then we have  2 0a x b m a x b        . Since   is 2-torsion free , we get 

    0a x b m a x b         for all , , , ,x I        and m . Next, since   is  semi-prime  

ring, then 0a x b    for all , ,x I    . 
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 If  0a I b   , then we also have      0b a I b a      and      0a b I a b     . Hence 0b a x    

and 0a b x    for all , ,x I    , since  is a semi-prime   ring and I is a non-zero ideal of  . 

This says that , la b b a Ann I   . Since  0lAnn I  , we have 0a b b a    . Finally if  0a I b   , then 

0a   or 0b   as  is a prime  ring .  

Theorem 1.4.9:
  14  If I  is an ideal in a  ring  , all the following conditions are equivalent: 

(i) I  is a semi-prime ideal . 

(ii) If a  such that a a I  , then a I  . 

(iii) If a is a principal ideal in   such that a a I  , then a I . 

(iv) If U  is a right ideal in   such that U U I  , then U I  . 

(v) If V  is a left ideal in   such that V V I  , then V I  . 

Proof : (i)  (ii) 

Let a  and a  is a principal ideal in  , suppose that a a I  . But 

a a a a   . Now since a  is an ideal of  , therefore by (i), we get 

a a a a I    , then a a I  , contradiction. 

Thus a a I  , but I  is a semi-prime ideal. Therefore  and a I a I  . 

(ii)  (iii) 

Since a  is a principle ideal in   such that a a I  . Therefore 

a a a a a a I      . Thus, a a I  , then by (ii) we get, a I . 

(iii)  (iv) 

Let  and a U a I  . Now let a  be a principal ideal generated by a , then  a a I  . If 

a a I  , then we get a I  . Therefore a a a a I    , then a a I  . But 

a a U U I    . We have a a I   . Therefore a I . 

(iv)  (v) 

If a V , then a a V  . Therefore a  is a principal ideal in   generated by a . Suppose that 

a a I  , then a a I   . So a a I  , but a  is a right ideal, then by assumption of (iv) we 

have, a I . 

(v)  (i) 

Let A  be an ideal of a  ring   such that A A I  . Since A  is a left ideal, then by (v), we have 

A I  thus I  is semi-prime ideal.  
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Theorem 1.4.10:
  25  An ideal Q  in a  ring   is a semi-prime ideal in   if and only if Q  contains 

no non-zero nilpotent ideals. 

Proof : Let f  be the natural  homomorphism of   onto Q , with kernel Q . Suppose Q  is a semi-

prime ideal in   and U  is a nilpotent ideal in Q , say   0
n

U U  .  

Then   1 n
f U U Q    and it follows that        1 1 1

n n
f U f U f U U Q       and hence  0U   . 

Conversely, suppose that Q  contains no non-zero nilpotent ideals and that A is an ideal in   

such that A A Q   . Then       0f A f A f A A    . Hence   0f A   and A Q .  

Lemma 1.4.11:
  7  Let   be a semi-prime  ring. Then   contains no non-zero nilpotent ideal. 

Proof: Let I  be a nilpotent ideal of  . Then   0
n

I I   for some positive integer n . Let us assume that 

n  is minimum. Now suppose that 1n  . Since I I , we then have    
1 1n n

I I I I
 

  

   
1n n

I I I I


      
2

0
n n

I I I I


    . Hence by the semi-primeness of   we get  
1

0
n

I I


  , a 

contradiction to the minimality of n . Therefore 1n  . Thus 0I I  .  

Then 0I I I I    .  

Since   is semi-prime, it gives 0I  . This completes the proof.  

Remark 1.4.12: The above lemma gives that every prime  ring has no nilpotent ideals. 

Lemma 1.4.13: Let 1, , nG G be additive groups, and   a semi-prime  ring. Suppose that the mappings 

1: nf G G    and 1: ng G G    are additive in each argument. If 

   1 1, , , , 0n nf a a m g a a   for all m  and  , 1, ,i ia G i n  , then 

   1 1, , , , 0n nf a a m g b b    for all m  and ,  , 1, ,i i ia b G i n   . 

Proof : It suffices to prove the case 1n  . The mappings are then 1:f G   and 1g :G   such that 

    0f a m g a    and     0f b m g b    for all 1,a b G  and m . Thus, we have  

   0 f a b m g a b      

                       f a m g a f a m g b f b m g a f a m g a             

           f a m g b f b m g a      . 

Let m . Then by the assumption, we get 
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                   0.f a m g b m f a m g b f a m g b m f b m g a                Hence, by the 

semi-primeness of  , we have     0f a m g b   . This completes the proof of the lemma.  

Definition 1.4.14:
  22  A subset N  of a  ring   is said to be an n system  if  N   or if a N  

implies a a N   . 

Lemma 1.4.15:
  22  Let   be a  ring. Then an ideal Q  in   is semi-prime if and only if 

CQ  is an n

system, where 
CQ is the complement of Q .  

Proof : Suppose that Q  is a semi-prime ideal and let 
Ca Q , then a Q . Since Q  is semi-prime, it follows 

from Theorem 1.4.9 that a a Q  . This implies that 
Ca a Q   , so that 

CQ  is an n system . 

Conversely, suppose 
CQ is an n system  and let a Q . We shall prove that a a Q  . Since 

CQ is an n system, 
Ca a Q   . Take 

Cz a a Q   so that z a a  and z Q . Hence 

a a Q  . Thus Q  is a semi-prime ideal .  

Definition 1.4.16:  15
 
 Let   be a  ring. If for any non-zero element a  of   there exists such an 

element   (depending on a ) in   such that 0a a  , we say that   is semi-simple. If for any non-zero 

elements a  and b  of   there exists   (depending on a  and b ) in   such that 0a b  , we say that   is 

simple.  

Theorem 1.4.17:  22
 
 Let   be a  ring. Then   is semi-simple if and only if   is semi-prime. 

Proof: Suppose that  0a a   for any a . Since  , 0a a a a a a     . Since   is semi-

simple,  0a a   implies that 0a  . Hence 0a  , so that   is semi-prime. 

 Conversely, suppose  0a a   for any a . Since  , 0a a a a a a     . Since   is 

semi-prime, it follows that 0a  . Hence   is semi-simple.   

Corollary 1.4.18:
  22    is semi-prime if and only if for any ideals ,U V  in  ,  0U V   implies that 

 0U V  .  

Proof: Suppose that   is semi-prime. Let ,U V  be ideals in   such that  0U V   and let x U V . 

Since x x U V   ,  0x x  . Since   is semi-prime,   is semi-simple by Theorem 1.4.17. hence 

 0x x   implies that 0x   and consequently  0U V  . 

 Conversely, suppose  0U U   implies  0U U   by hypothesis. Hence  0U  , so that   is 

semi-prime.   
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Definition 1.4.19:
  17  An element a  of a  ring   is called strongly nilpotent if there exist a positive 

integer n  such that    ... 0
n

a a a a a a a       . A subset S  of   is strongly nil if each of its elements 

is strongly nilpotent. S  is strongly nilpotent if there exist a positive integer n  such that   0
n

S S  .  

Clearly a strongly nilpotent set is also strongly nil. 

Definition 1.4.20: The strongly nilpotent radical, denoted by S  of a  ring   is defined as the sum of 

all strongly nilpotent ideals of   . 

Theorem 1.4.21: Every prime gamma ring is simple. 

Proof: Let   be a prime  ring. We show   is simple. If possible, let  be not simple. Then there 

exists two non-zero elements ,x y  such that, 0x y   for all   . Let A x  and B y . Then A  

and B  are ideals of  . Let a A B   be any element. Then a x y   since  0x y   for all   , so 

0a  . Thus we get,  0A B  . 

Since   is a prime  ring, so    0 0A B A     or  0B  . 

Without loss of generality, let  0A  . Then 0 0x x   , which contradicts that x  is non-zero. 

Thus   is simple.  

Remark 1.4.22: Every prime gamma ring is semi-simple.  

Theorem 1.4.23:  17
 
 Every simple gamma ring is a prime gamma ring. 

Proof: Let   be a simple  ring. Then for any two non-zero elements ,x y , there exist    such 

that 0x y  . 

 Let ,U V  be two ideals of   such that  0UV  . We show  0U   or  0V  . If possible let 

 0U   and  0V  . Then there exist 0 x U   and 0 y V  . Since   is simple so there exist    

such that 0x y  . 

Now  0 0x y UV x y     , which is a contradiction. So our supposition is wrong. So we 

must have  0U   or  0V  . Hence   is a prime  ring.  

 Definition 1.4.24:  22
 
 Let   be a  ring. Then a left ideal I of    is said to be essential if  0I J   

for all non-zero left ideals J  of  .     
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Definition 1.4.25:  12
 
 Let   be a  ring. Then the mapping :I   is called an  involution  if  

(i)  II a a  ; 

(ii)      I a b I a I b    ; 

(iii)      I a b I b I a  . 

For all ,a b  and  .  

Example 1.4.26: Let   be a  ring. Define   1 , : ,a b a b    and   1 , :     . The 

addition and multiplication on 1  are defined as follows:  

      , , ,a b c d a c b d     and      , , , ,a b c d a c d b    . 

Under these addition and multiplication 1  is a 1  ring.  

Define 1 1:I    by      , ,I a b b a . Then  

        , , ,II a b I b a a b 
 

 
       , , ,I a b c d I a c b d   

  

      
 ,b d a c  

  

      
   , ,b a d c 

  

      
     , ,I a b I c d 

  

  
       , , , ,I a b c d I a c d b   

  

               
 ,d b a c 

  

               
   , , ,d c b a 

  

               
      , , ,I c d I a b 

 

Therefore, I  is an involution of  the 1  ring 1 .  

 

 

 

 

20 



 

 

1.5 Gamma Modules 

In this section we introduce and study the notion of modules over a fixed ring. 

Definition 1.5.1:  2
 
 Let  be a ring. A (left) is an additive abelian group together 

with a mapping . :R  ( the image of   being  denoted by ), such that for all 

and  the following hold : 

(i)  

(ii)  

(iii)  

(iv)  

A right is defined in analogous manner. 

Definition 1.5.2:
  2  A (left) is unitary  if there exist elements, say  in and , such 

that,  for every . We denote  by , so  for all .  

Remark 1.5.3:  2  If  is a left  then it is easy to verify that . 

 If  and  are rings then an bimodule  is both a left  and right 

 and simultaneously such that    r m s r m s    , m  , r R  , s S  and ,   . 

Example 1.5.4: If  is a ring, then every abelian group  can be made into an  with 

trivial module structure by defining  

Example 1.5.5: Let  be an arbitrary commutative ring with identity. A polynomial in one 

indeterminate x   with coefficients in  is an expression   1 2

1 2 1 0...n n

n nP x a x a x a x a x a

       with 

ia R . The set  of all polynomials is then an abelian group. Now  becomes an  

under the mapping 
 

,      , ,r f x r f x   
1

n
i

i

i

r a x


 . 

Example 1.5.6: If is a ring and  is an
 

. Set . For 

 and , define the mapping  

          
1

, ,
m n

k

k k

k

g x f x g x f x a b x  




 . It is easy to verify that  is an  . 
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R  moduleR  

 , ,r m r m

1 2, ,m m m  1 2 1 2, , , , ,r r r R    

 1 2 1 2;r m m r m r m    

 1 2 1 2 ;r r m r m r m    

 1 2 1 2 ;r m r m r m     

   1 1 2 2 1 1 2 2 .r r m r r m   

moduleR 

moduleR   1 R 0 

01 m m  m 01
0

1 0
1 m m  m

 moduleR  0 0 0 0m r m r    

R S   ,R S

  moduleR 

moduleS 

R   moduleR 

0 , , ,  .r m r R m       

R 

R

 R x  R x moduleR 

   . : R R x R x 

R   moduleR   
0

:
n

i

i i

i

x a x a


 
   

 


 
0

n
j

j

j

f x b x


  
0

m
i

i

i

g x a x


      . : R x x x 

 x   moduleR x





 

 

Example 1.5.7: Let  be an ideal of a ring . Then  is an , where the mapping 

 is defined by . 

Example 1.5.8: Let be an , . Letting . Then is 

an . 

Proposition 1.5.9:
  2  Let  be a ring and  be an . Set , 

then  Sub   is an . 

Proof : Define  by  for . Then  is 

an additive group with identity element  and the inverse of each element  is itself. Consider the mapping  

   : R Sub Sub      

, where . Then we have  

(i)
 

 

  . 

And  

 

  

(ii)  

   

(iii)  

  . 

(iv)  

     .  
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I  R R I moduleR 

.: R R I R I     , ,r r I r r I   

 moduleR  m    : 0 T m t R t m       T m

moduleR 

R   , ,.  moduleR     : XSub X  

moduleR 

 : ,A B A B      \ \A B A B B A   ,A B Sub    ,Sub  

 A

 , ,r X r X r X    :r X r x x X  

        1 2 1 2 1 2 2 1. . . . \ \r X X r X X r X X X X     

         1 2 2 1 1 2 2 1. . : \ \ . . : \ \r a a X X X X r a a X X X X    

   1 2 1 2 1 2 2 1. . . . . . \ . . . . \ . .r X r X r X r X r X r X r X r X          

     

    

1 2 2 1

1 2 2 1

. . : \ . . : \

. . : \ \

r x x X X r x x X X

r x x X X X X

 



  

 

        1 2 1 2 1 2 1 2. . . . : . . . . :r r X r r X r r x x X r x r x x X            

1 2 1 2. . . .r X r X r X r X      

      1 2 1 2 1 2. . . . :r X r X r x x X          

 1 2 1 2 1 2. . . . : . . . .r x r x x X r X r X r X r X           

         1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2. . . . : . . . .x :r r X r r X r r x x X r r x X           

    1 1 2 2 1 1 2 2. . . . : . . . .r r x x X r r X     



 

 

Example 1.5.10:Let  be a ring. Then is a left , where 

  addition operation is defined by      , , ,Rr n r n r r n n         and the product 

 is defined by    . . , , .r r n r r n    

Example 1.5.11: Let and  be rings. Then 

        i.    The product  is a ring, under the mapping 
 

    . 

ii. For  there exist a mapping , such that  and 

 is a ring. Moreover,  is an module under the mapping  .  

. 

Definition 1.5.12:  2  Let  be an module. A nonempty subset  of  is said to be a (left) 

submodule  of  if  is a subgroup of  and , where , 

that is for all and for all and . In this case we write . 

Remark 1.5.13: (i) Clearly  and  are two trivial submodules of an module  called the 

trivial submodules. 

(ii) Consider  as module. Clearly, every ideal of ring  is a submodule of . 

Theorem 1.5.14:
  2  Let  be an submodules of . Then every submodule of  is of the 

form , where  is an submodule of containing . 

Proof : For all  we have , 

and , we have . Then  is a  

submodule of . Conversely, it is easy to verify that  then  is  submodule of . 

This complete the proof.  

Proposition 1.5.15: Let be an  module and  be an ideal of . Let  be a nonempty subset of 

. Then is an  submodule of .  
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 ,R    , : ,R r s r R s    moduleR 

 .: R R R   

 ,.R  S, 

R S 

      1 1 2 2 1 2 1 2, , , , . . ,r s r s r r s s  

0
: ,

0

r
A r R s S

s

  
    

  
R S A   

0
,

0

r
r s

s

 
 
 

A  A  R S


   . : R S A A  

  2 1 2

1 1

2 1 2

0 . . 0
, , ,

0 0

r r r
r s

s s s






    
    

    

 ,  R  N  , 

R   N  R N N   : , ,R N r n r R n N     

,n n N , ;r R n n N     r n N  N 

 0  R  R  

R 

R R   R R

N R   R  N

K N K R   N

     , , , ; ,x y K x N y N K N x N y N x y N K N           x y K 

, ,r R x K       r x N r x N K N r x K        K R 

 N K  K N R  N

 R  I R X 

1

: , , ,
n

i i i i i i

i

I X a x a I x X n 


 
      

 
 R  



 

 

Proof : For elements and 
1

m

j j j

j

y a y


  of , we have . Now we 

consider the following cases:  

Case (1): If , then  . 

Case (2): If , then .  

Now, , we have  . Thus is an 

submodule of .  

Definition 1.5.16:
  2  Let  be an module and . Then the generated by X   

submodule of , denoted by  is the smallest submodule of  containing , i.e. 

,  is called the generator  of ; and is finitely generated if . If 

we write  instead of . In particular, if  then  is called the 

cyclic submodule  of  , generated by . 

Definition 1.5.17:
  2  Let  and  be arbitrary modules. A mapping  is a homomorphism  

of modules (or an homomorphism) if for all  and  we have  

(i)  

(ii) . 

A homomorphism  is monomorphism if  is one-to-one and is epimorphism  if  is onto.  is called 

isomorphism  if is both monomorphism and epimorphism . We denote the set of all homomorphisms 

from into by or shortly by . In particular if we denote 

 by . 

Remark 1.5.18: If  is an homomorphism, then is an 

homomorphism of   and  is an submodules  of N . 

Example 1.5.19: For all modules , the zero map  is an homomorphism . 
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1

n

i i i

i

x a x


 I X
1

m n

k k k

k

x y b z I X




   

1 k n  , ,k k k k k kb a z x   

1n k m n    , ,k k n k k n k k nb a z y   
   

1

, ,
n

i i i

i

r R x a x I X 


           
1 1

n n

i i i i i i

i i

r x r a x r a x    
 

   I X

R  

 R  0 X  R 

 X R   X

 :X N N  X X X X 

 1, , nX x x 1, , nx x  1, , nx x  X x x

 x

 N R  f N

R  R  ,x y ,r R    

     ;f x y f x f y  

   f r x r f x 

f f f f f

f R 

 N  ,RHom N

  ,Hom N N 

 ,Hom N  End 

f N R    : 0Kerf x f x   R 

   : ;Imf y N x y f x     R 

R  ,A B 0: A B R 



 

 

Example 1.5.20: Let  be a ring. Fix and consider the mapping 

 by . Then  is an module homomorphism, because  and 

 

 and 

  . 

Proposition 1.5.21: Let  be a ring. If  is an homomorphism and , then 

there exists a unique homomorphism , such that for every ;  and 

,  and , also  is 

 an isomorphism if and only if it is an epimorphism and . In particular . 

Proof : Let  then  for some , also . 

 We know  is homomorphism , therefore  (since 

) then  is well defined function.  

Also  and  we have  

(i)  

(ii) . 

Then  is a homomorphism of modules, also it is clear  and 

 , then .  

The definition of   depends only on , then  is unique. 

  is an epimorphism if and only if is an epimorphism.  is a monomorphism if and only if is a 

trivial submodule of . 

Actually if  then .  
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R  0r 

   : R x R x  0f f x  R  ,r R    

 , ;f g R x 

       0 0 0f g f g x f x g x f g           

   0r f r f x r f     

R  :f N R  C Kerf

R  :f C N  x Kerf Kerf C

Imf Imf    f x C f x  f

R  R  C Kerf Kerf Imf 

b x C  b x c  c C    f b f x c 

f R             0f b f x c f x f c f x f x      

C Kerf :f C N 

,x C y C C    ,r R   

                 f x C y C f x y C f x y f x f y f x C f y C             

          f r x C f r x C f r x r f x r f x C          

f R  Imf Imf

     ; 0 0x C Kerf x C Kerf f x C f x x Kerf            Kerf Kerf C

f f f

f f f Kerf

R  C

Kerf C Kerf Imf 



 

Chapter Two 

Derivations On Rings 

2.1 Jordan Generalized Left Derivations On Rings 

      Throughout the following, we assume that   is an arbitrary  ring and F  a generalized Jordan 

derivation on  . Clearly, every generalized derivation on   is a Jordan generalized derivation. The 

converse in general is not true. In the present section, it is shown that every Jordan generalized derivation on 

certain  rings is a generalized derivation.  

Definition 2.1.1:
  27  An additive mapping  is called a derivation ( derivation)  on a 

ring  if  holds for all , and . 

Definition 2.1.2:
  27  An additive mapping  is called a Jordan derivation  on a ring  if 

 holds for all , and . 

Definition 2.1.3:  5
 
An additive mapping  is called a generalized derivation  (generalized 

derivation) on a ring  if there exists a derivation  such that 

 for all , and . 

Definition 2.1.4:  5
 
An additive mapping  is called a Jordan generalized derivation  on a 

ring  if there exists a derivation  such that  for all , and 

. 

Example 2.1.5: Let  be a generalized derivation on a ring . Then there exists a derivation 

 such that  for all . Taking  and 

.  

Then is a ring. If we define the map  by  then  is a 

derivation on . Let  be the additive map defined by .  

Then is a generalized derivation on . Let  be the subset  of . Then  is a 

ring, and the map defined in terms of the generalized  Jordan derivation  on  by 

 is a generalized  Jordan derivation on . 

 

 

 

 

27 





:D   

      D x y D x y x D y    ,x y 

:D   

     D x x D x x x D x    x 

:F  

  :D 

     F x y F x y x D y    ,x y 

:F  

 :D       F x x F x x x D x    x



:f R R R

:d R R      f xy f x y xd y  ,x y R  1 2 R 

1
:  is an integer

0

n
n

  
    

  

  :D         , ,D x y d x d y D

 :F         , ,F x y f x f y

F  N   , :x x x R  N 

:F N N :f R R R

       , ,F x x f x f x N



 

 

Definition 2.1.6:
  27   Let  be a ring and  be an additive map. is called a left 

derivation  if for all  

    . 

A right derivation is defined similarly. 

Definition 2.1.7:
  23   Let be a ring and  be an additive map. is called a Jordan left 

derivation  if for all 
  

 . 

Definition 2.1.8:
  23   Let be a ring and  be an additive map. is called a Generalized 

left derivation  if there exist a left derivation  such that for all  

         D x y x D y y d x     . 

Definition 2.1.9:
  23   Let be a ring and be an additive map. is called a Generalized  

Jordan left derivation  if there exist a Jordan left derivation  such that for all  

     . 

Proposition 2.1.10: Let  be an arbitrary ring,  be a generalized  Jordan left derivation 

and  be its associated  Jordan left derivation. Then for all , we have  

. 

Proof : By Definition 2.1.9, we have 

 

   

   

  .    2.1.1
 
 

Also, 
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  :D  D

, ,x y  

     D x y x D y y D x   

  :D  D

,x  

   2D x x x D x 

  :D  D

:d  , ,x y  

  :D  D

:d  ,x  

     D x x x D x x d x   

  :D 

:d  , ,x y  

         D x y y x x D y x d y y D x y d x         

            D x y x y x y D x y x y d x y         

             x y D x D y x y d x d y      

       x D x x D y y D x y D y      

       x d x x d y y d x y d y      



 

 

 

         
 . 

By using Definition 2.1.9, we get

 .  2.1.2   

In view of  2.1.1  and  2.1.2 , we get  

         . 

This completes the proof.   

Corollary 2.1.11: Let  be an arbitrary  ring and  be a  Jordan left derivation. Then for all 
, we have  

 . 

Proposition 2.1.12:
  23  Let  be a 2-torsion free ring and  holds for all  

and . Let  be a Generalized  Jordan left derivation and  be an associated 

Jordan left derivation. Then the following statements hold for all  and . 

(i)  . 

(ii)  

. 

Proof : In view of Proposition 2.1.10, consider the following  

  . 

The replacement of  by  in the last relation yields  

 

. 
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       D x y x y D x x x y y x y y         

     D x x D x y y x D y y      

              D x y x y x D x x d x D x y y x y D y y d y             

         D x y y x x D y x d y y D x y d x         

  :d 

, ,x y  

     2 2d x y y x x d y y d x     

  x y z x y z    , ,x y z

,   :D  :d 

, ,x y z ,  

         2D x y x x y D x x y y x d x x x d y           

         2D x y z z y x x y D z z y D x z y y z d x              

       2x y y x d z x z z x d y        

         D x y y x x D y x d y y D x y d x         

y x y y x 

    D x x y y x x y y x x       

           x D x y y x x d x y y x x y y x D x x y y x d x                  



 

 

By using Proposition 2.1.10 and Corollary 2.1.11 in the last relation, we get  

  

  

 . 

That is,  

  

          2x x D y x x d y x y D x x y d x x x d y                

          2x y d x x y D x x y d x y x D x y x d x              . 

or, 

  

         2x x D y x x d y x y D x x y d x x x d y               

 . 

In view of Definitions 2.1.7 and 2.1.9, the last expression becomes  

  

  

  . 

By canceling identical terms and using the given condition  for all  and 

, we get  

  

  

 . 
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    D x x y y x x y y x x       

             2 2x x D y x d y y D x y d x x x d y y d x            

       x y y x D x x y y x d x        

   2D x y x D x x y y x x      

             2D x y x x x D y x x d y y D x x y d x x            

         2x y d x x y D x x y d x y x D x y x d x             

              2 2D x y x x x D y x x d y y x D x x d x y x d x              

         2x x D y x x d y x y D x x y d x x y d x             

         2x x d y x y D x x y d x y x D x y x d x             

x y z x y z    , ,x y z

,  

           2 2D x y x x x D y x x d y y x D x y x d x y x d x               

         2x x D y x x d y x y D x x y d x x y d x             

         2x x d y x y D x x y d x y x D x y x d x             



 

 

Consequently, 

  

As  is a 2-torsion free ring so, 

 . 

This completes the proof of (i). 

(ii) The replacement of  by  in (i), gives  

  

                2x z y D x z x z y y x z d x z x z x z d y                  , 

  

  

  , 

or,  

  

  

  

            y z d x y z d z x x d y x z d y z x yd y z z d y                 . 

The application of Proposition 2.1.12 (i) in the last relation, gives  

  

  

          2x y D x x y D z z y D x z y D z x y d x                

      2 2 2x y d z z y d x z y d z         

  

 . 
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         2 2 2 4 2D x y x y x d x x y D x x y d x x x d y            

 

         2D x y x x y D x x y y x d x x x d y           

x x z

    D x z y x z  

 D x y z z y x x y x z y z         

             2 2x z y D x D z x y z y y x y z d x d z             

       x x d y x z d y z x d y z z d y          

     D x y z z y x D x y x D z y z         

         2x y D x x y D z z y D x z y D z x y d x             

         2 2 2x y d z z y d x z y d z y x d x y x d z             

         2D x y z z y x x y D x x y d x y x d x x x d y               

       2z y D x z y d z y z d z z z d y          

         y x d x y x d z y z d x y z d z x x d y             

     x z d y z x d y z z d y       



 

 

Consequently, 

  

 , 

or  

 

 
   

. 

This completes the proof of (ii) .  

Corollary 2.1.13:
  23  Let  be a 2-torsion free ring and  hold for all  

and . Let  be  Jordan left derivation.  

Then the following statements hold for all  and . 

(i)        3d x y x x x d y x y d x y x d x          . 

(ii)  

. 

Proposition 2.1.14:
  23  Let  be a 2-torsion free ring and  hold for all  

and . Let  be a generalized  Jordan left derivation and  be an associated 

Jordan left derivation. Then the following statements hold for all  and . 

(i) . 

(ii) . 

 

2.2 Gamma-Derivations On The Projective Product Of Rings 

This section highlights many enlightening results on various gamma-derivations in the projective 

product of gamma-rings.  

Definition  2.2.1:
  16   Let   be a ring, then an additive mapping  is called a semi-

derivation  associated with a function  if for all  and , 

 and  . 

If  i.e. the identity mapping on , then all semi-derivations  associated with  are merely 

ordinary derivations. 

32 

         2 2D x y z z y x x y D z z y D x z y d x x y d z               

       y z d x y x d z x z d y z x d y          

         2D x y z z y x x y D z z y D x z y y z d x              

       2x y y x d z x z z x d y        

  x y z x y z    , ,x y z

,   :d 

, ,x y z ,  

         3d x y z z y x x z z x d y x y y x d z             

   3z y y z d x   

  x y z x y z    , ,x y z

,   :D  :d 

, ,x y z ,  

       x y y x x d x x x y y x d x         

         0x y y x d x y x d y y d x        



 :d  

:g  ,x y 

             d x y d x g y x d y d x y g x d y             d g x g d x

1g    g





 

 

If  is an endomorphism of , then other examples of semi-derivations are of the form 

. 

Definition  2.2.2:
  16

 
 A derivation  is said to be inner  if  s.t . A 

mapping , where  are fixed elements in  and for all is called a generalized  

inner  derivation . 

Definition  2.2.3:
  16   Let  be a nonempty subset of  and let  be a derivation on . If 

 [ or      d x y d y d x  ], for all , then  is said to be a 

homomorphism  [ or an anti homomorphism ] on . 

Definition  2.2.4:
  16

 
 Let 1  a 1  ring and 2  a 2  ring. Let  and . Then we 

define addition and multiplication on  and  by, ,  

  and  for every 

  and . 

With respect to this addition and multiplication    is a ring. We call this ring  the Projective 

product of  rings.  

Since 1 , 2  and 1 , 2  are additive abelian groups, so obviously  and  are 

additive abelian groups. To show     is a ring, we need to show the following properties:  

Let and  be any elements . 

Property  (i) : 

 we have  

    
  

 

as 1 1 1 1x y  , 2 2 2 2x y   [since 1  is a 1  ring and 2  is a 2  ring]           then x y  . 

Property (ii) : 
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g 

   d x x g x 

 D  a   D x x a x x a   

x x a x x b   ,a b  

S  d  

     d x y d x d y  , ,x y S   d 

 S

1 2   1 2   

       1 2 1 2 1 1 2 2, , ,x x y y x y x y   

     1 2 1 2 1 1 2 2, , ,                1 2 1 2 1 2 1 1 1 2 2 2, , , ,x x y y x y x y   

   1 2 1 2, , ,x x y y     1 2 1 2, , ,    

 



1 2   1 2   



     1 2 1 2 1 2, , , , z ,zx x x y y y z         1 2 1 2 1 2, , , , ,           

, ,x y       1 2 1 2 1 2, , ,x y x x y y  

 1 1 1 2 2 2,x y x y 

        1 2 1 2 1 2 1 2, , , ,x y z x x y y z z    

      1 1 2 2 1 2 1 2, , ,x y x y z z   



 

 

  

  
     

 

        

        

Thus we get, . Similarly, and . 

Property (iii) : 

 

                
 

     [since 1 is a 1  ring and 2 is a 2  ring] 

      

      

Thus we get, . Similarly, . 

Let  

     

     

     [since 1  is a 1  ring and 2  is a 2  ring] 

     

Thus we get, . 

Hence   is a gamma ring which is known as the projective product of gamma rings. 
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    1 1 1 1 2 2 2 2z , zx y x y   

 1 1 1 1 1 1 2 2 2 2 2 2z z , z zx y x y     

   1 1 1 2 2 2 1 1 1 2 2 2z , z z , zx x y y    

       1 2 1 2 1 2 1 2 1 2 1 2, , , , y , ,x x z z y z z x z y z        

 x y z x z y z      x z x z x z       x y z x y x z    

        1 2 1 2 1 2 1 2 1 2, , , y , ,zx y z x x y z     

        1 1 1 2 2 2 1 2 1 2 1 1 1 1 1 2 2 2 2 2, , , ,x y x y z z x y z x y z        

    1 1 1 1 1 2 2 2 2 2,x y z x y z   

   1 2 1 2 1 1 1 2 2 2, , ,x x y z y z   

         1 2 1 2 1 2 1 2 1 2, , , y , ,zx x y z x y z      

   x y z x y z       x y z x y z   

   1 2 1 2 1 20 , , , , y 0x y x y x x y     

   1 1 1 2 2 2, 0 0,0x y x y   

1 1 1 2 2 2 1 1 1 2 2 20 , 0 , ,  and ,x y x y x y x y      

1 20 , 0   

   1 2, 0,0 0     

0 , 0x y x y    



 

 

Theorem  2.2.5:
  16

 
 Let 1  a 1  ring and 2  a 2  ring and   be their projective product. Then we 

get the following results : 

(i) Every pair of derivations  and   on 1   and 2  respectively give rise to a 

derivation  on  . 

(ii) Two semi-derivations  and   on 1   and 2  respectively give rise to a semi-

derivation  on  . 

(iii) For every generalized derivations  and   on 1   and 2  respectively give rise to a 

generalized derivation  on  . 

(iv) Two inner derivations  and   on 1   and 2  respectively give rise to an inner 

derivation  on  . 

(v) Every two Jordan derivations  and  on 1   and 2  respectively give rise to a Jordan 

derivation  on   defined by  and . 

(vi)  Every two generalized  Jordan derivations  and  on 1   and 2  respectively give rise to a 

generalized  Jordan derivation  on   constructed with the help of  and . 

(vii) Every two generalized inner derivations on 1  and 2  respectively give rise to a generalized 

inner derivation on  . 

(viii) If  and  be two homomorphisms on  1  and 2  respectively, then there exist a 

homomorphism on   constructed with the help of  and . 

Proof : (i) We define a mapping :D   by          1 2 1 1 2 2, ,D x D x x D x D x  . Clearly, D is well 

defined mapping. We show that D is a derivation on a  ring  . 

Let    1 2 1 2, ,  ,x x x y y y    and  1 2,     be any elements. Then 

                1 2 1 2 1 1 2 2 1 1 1 2 2 2, , , ,D x y D x x y y D x y x y D x y D x y            

             1 1 1 1 2 2 2 2,D x D y D x D y   [since 1D  and 2D  are additive mappings] 

                        1 1 2 2 1 1 2 2 1 2 1 2, , , ,D x D x D y D y D x x D y y D x D y        

Thus,        ,D x y D x D y x y      which implies that D  is additive. 

Again,                    1 2 1 2 1 2 1 1 1 2 2 2 1 1 1 1 2 2 2 2, , , , ,D x y D x x y y D x y x y D x y D x y            

            1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2,D x y x D y D x y x D y       [since 1D  and 2D  are gamma-derivations 

on 1  and 2  respectively] 
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 1D 2D 

D

 1d 2d 

d

 1f 2f

 f

 1d 2d 

d

1j 2j

j 1j 2j

1j 2j

j 1j 2j

1 2

1 2



 

 

=          1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2, ,D x y D x y x D y x D y     

    =               1 1 2 2 1 2 1 2 1 2 1 2 1 1 2 2, , , , , ,D x D x y y x x D y D y     

      D x y x D y       

Thus,        ,D x y D x y x D y x y       and  . So D  is a gamma-derivation on   .  

(ii)  Let  be a semi-derivation on 1  associated with the function  and  be a 

semi-derivation on 2  associated with the function . 

We define the functions  and  by  

 
and 

 for all  

Then clearly  and  are well defined as well as  is additive. Let    1 2 1 2, , ,x x x y y y    

and  1 2,     be any elements. Then, 
    

 

              
  [since  and are 

semi-derivations on 1   and 2  respectively ] . 

 

                  1 1 2 2 1 2 1 1 2 2 1 2 1 2 1 1 2 2, , , , , ,d x d x g y g y x x d y d y       

 

 

Thus,  for all  and  . 

Similarly, we can show that,  for all  and . 

Again,  
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1d  1 1 1:g   2d 

2 2 2:g  

:d  g :

         1 2 1 1 2 2, ,d x d x x d x d x 

         1 2 1 1 2 2, ,gg x g x x g x x   1 2,x x x 

d g d

              1 2 1 2 1 2 1 1 1 2 2 2 1 1 1 1 2 2 2 2, , , , ,d x y d x x y y d x y x y d x y d x y        

            1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2,d x g y x d y d x g y x d y      1d 2d 

             1 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2, ,d x g y d x g y x d y x d y    

            1 2 1 2 1 2 1 2 1 2 1 2, , , , , ,d x x g y y x x d y y    

     d x g y x d y  

       d x y d x g y x d y    ,x y 

       d x y d x y g x d y    ,x y 

                   1 2 1 1 2 2 1 1 1 2 2 2, , ,d g x d g x x d g x g x d g x d g x  



 

 

 [Since  and are semi-derivations on 
      

 

1  and 2  respectively ] 

  
 

Thus we get,  

Hence  is a semi-derivation on   associated with the function  and hence the required result. 

 iii  using same method in part  ii . 

(iv)  Let  be an inner derivation on 1   with respect to the element  and  be an inner 

derivation on 2   with respect to the element . We defined a mapping  by 

 . Then,  is well defined as well as additive. 

Let  and  be any two elements. Then

 

  [Since  and are inner derivations on 1   and  2  w.r.t  and 

 respectively ] 

 

 where  

Thus  is an inner derivation on    with respect to the element . Similarly we can show 

     , ,v vi vii  and  vii .   

Theorem  2.2.6:
  16  For every derivation on  , there exist derivations  and on 1   and  2   

respectively, where   is the projective product of  1   and  2 . 

Furthermore, if is semi-derivation/ generalized derivation /inner derivation/ Jordan derivation/ 

generalized  Jordan derivation, then  and are also so. 

Proof : Let D  be a derivation on  . Let  be any element of  and let  

We define a map  by , i.e. by     1 ,0D x fD x  [i.e. the first component of 

]. We shall show that is a derivation on 1 . 

 

37 

      1 1 1 2 2 2,g d x g d x 1d 2d

            1 1 2 2 1 2, ,g d x d x g d x x g d x  

       , d g x g d x x  

d  g

1d  1a 2d 

2b :d 

           1 2 1 1 2 2 1 2, ,  , ,d x d x x d x d x x x x     d

 1 2,x x x   1 2,   

              1 2 1 2 1 2 1 1 1 2 2 2 1 1 1 1 2 2 2 2, , , , ,d x x d x x x x d x x x x d x x d x x        

 1 1 1 1 2 2 2 2,a x x a b x x b      1d 2d a

b

           1 1 2 2 1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2, , , , , , , ,a x b x x a x b a a x x x x a a          

m x x m    1 2,m a a 

d m

D 1D 2D

D  

1D 2D

1x 1     1 1 2,0 ,D x u u

1 1 1:D    1 1 1D x u

  ,0D x 1D



 

 

Let  be any two elements and , then  

        [since  is additive] 

 
       

 

Thus we get,  i.e.  is an additive. 

Now,  

,where and , 

[since is a derivation on  ] 

 

 

Thus we get,      1 1 1 2 1 1 1 2 1 1 1 2D x x D x x x D x     1 2 1,x x   and . 

So  is a derivation on 1   defined by the derivation  on  . 

Similarly defining a mapping,  by , where  represents the second 

component of , we can show that is a derivation on 2 . 

Thus for every derivation   on   there exist derivations  on 1  and  is on 2  and hence 

the desired result.  

Remark 2.2.7:  16  The above results can be extended to the projective product of n  number of Gamma-

rings. 

2.3 Jordan Generalized Reverse Derivations On Rings 

In this section we introduce and study the concepts of reverse derivation, generalized reverse 

derivation, Jordan generalized reverse derivation, higher reverse derivation and generalized higher reverse 

derivation of  ring. 

Definition 2.3.1:
  8

 
 Let  be a ring and  be an additive mapping then  is called  

reverse derivation  if  , for all .  
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1 2 1,x x  1 1         1 1 2 1 2 1 2,0 ,0 0D x x fD x x fD x x     

          1 2 1 2,0 ,0 ,0 ,0fD x x f D x D x      D

         1 2 1 1 1 2,0 ,0fD x fD x D x D x   

     1 1 2 1 1 1 2 1 2 1 ,D x x D x D x x x     1D

       1 1 1 2 1 1 2 1 1 2 2 2 2,0 ,0 0 ,D x x fD x x fD x x      

      1 1 2 2,0 , ,0fD x x fD x y       1 2,0 , ,0x x y x   1 2,  

   f D x y x D y     D

              1 1 2 2 1 1 2 2,0 , ,0 ,0 , ,0f D x y f x D y f D x x f x D x                     

           1 1 1 2 1 1 1 2f D x y f x D y fD x f fy fxf fD y D x x x D x                

1 1 

1D D

2 2 2:D       2 0,D x sD x s

  0,D x 2D

D 1D 2D



  :d  d

     d x y d y x y d x    , ,x y  



 

 

Let  i i
D d


  be additive mappings on a ring R  then D  is called higher reverse derivation of   

ring   if         , , ,  and n i j

i j n

d x y d y d x x y n  
 

     .  

D  is called a Jordan higher reverse derivation of    ring   if  

       , ,  and n i j

i j n

d x x d x d x x n  
 

     . 

D  is called a Jordan triple higher reverse derivation of    ring   if  

           , , , ,  and 
i n

n n i j r

i j r n

d x y x d x x y d x d y d x x y n       
  

      . 

Remark 2.3.2:
  8  If  is commutative, then both a derivation and the reverse derivation are the same. 

Example 2.3.3: Let  be an associative ring with ,  be a reverse derivation. By Example 2.1.5 

define  by . If  and 
.1

0

n


 
  
 

. Then we 

have  

     1 1 2 2

.1
, ,

0

n
D a b D x x x x

  
   

    

 

    

 
  

 

    

               2 2 1 1 2 2 1 1

.1 .1
, , , ,

0 0

n n
d x d x x x x x d x d x

   
    

     

 

 
 

. 

Hence  is a reverse derivation on the ring . 

Example 2.3.4: Let  be a ring and

 

: ,
0 0

x y
x y R

  
    

  
, where , and

0
:  is an integer

0 0

n
n

  
    

  
.  
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R 1 :d R R

:D N N        , ,D x x d x d x    1 1 2 2, , ,a x x b x x 

      1 2 1 2 1 2 1 2, ,D x nx x nx d x nx d x nx 

        2 1 2 1 2 1 2 1,d x nx x nd x d x nx x nd x  

         2 1 2 1 2 1 2 1, ,d x nx d x nx x nd x x nd x 

         2 2 1 1, ,D x x a b D x x D b a b D a      

D  N

R 2 0R 



 

 

Then  is a ring. Let  defined by  
0

0 0 0 0

x y y
d A d

    
     

    
 . It is easy to show that  

is derivation but not reverse derivation. 

Example 2.3.5: Let  be a ring and 

0

0 0 0
: , ,

0 0 0

0 0 0 0

x y z

y
x y z R

x

  
  
     
  
      

, and 

0 0 0 0

0 0 0
:  is an integer

0 0 0

0 0 0

n
n

n

n

  
  
     
  
    

. Then  is a ring. Let  defined by 

 

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

x y z z

y y
d A d

x x

     
    
     
     
     
      

. It is easy to show that  is a reverse derivation but not a 

derivation. 

Definition 2.3.6:
  21   Let  be a  ring and  be an additive mapping then  is called 

generalized reverse derivation on  if there exists a reverse derivation  such that 

 for every . 

 is said to be a  Jordan generalized reverse derivation of   if there exists a Jordan reverse derivation 

such that for every . 

 is said to be a  Jordan generalized triple reverse derivation of   if there exists  Jordan triple higher 

reverse derivation of  such that:  

 for every . 

Remark 2.3.7: As shown in the examples above, the reverse derivation is not a derivation in general, but it 

is a Jordan derivation . 

Remark 2.3.8: Every generalized reverse derivation of a ring  is Jordan generalized reverse 

derivation of . 

Lemma 2.3.9:
  8  Let  be a ring and let  be a  Jordan generalized reverse derivation of  then for 

all  and , the following statements hold:  
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  :d  d

R

  :d 

d

  :f  f

 :d 

     f x y f y x y d x    , ,x y  

f 

     f x x f x x x d x    ,x  

f 



       f x y x f x x y x d y x x y d x          , , ,x y   

 



  f 

, ,x y z ,  



 

 

(i)  

(ii)          f x y x x y x f x x y x d y x x y d x f x x y                  

 

(iii)  

(iv)  

 

(v)  

(vi)  

. 

Definition 2.3.10:
  21   Let  be a Jordan generalized reverse derivation of a ring , then for all 

 and  we define: 

    

Lemma 2.3.11: If  is a Jordan generalized reverse derivation of ring , then for all  and 

 we get : 

(i)  

(ii)  

(iii)  

(iv)   

Proof: (i) By Lemma 2.3.9 (i) and since  is additive mapping of  we get : 

 

 

 

 

Then we get . 
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         f x y y x f y x y d x f x y x d y         

   x d y x x y d x    

       f x y x f x x y x d y x x y d x         

         f x y z z y x f z x y z d y x z y d x f x z y               

   x d y z x y d z    

       f x y z f z x y z d y x z y d x         

         f x y z z y x f z x y z d y x z y d x f x z y               

   x d y z x y d z    

f  

,x y 

       ,x y f x y f y x y d x


     

f   , ,x y z

,  

   , ,x y y x
 

  

     , , ,x y z x z y z
  

    

     , , ,x y z x y x z
  

    

     , , ,x y x y x y
   

  

 

f 

         f x y y x f y x y d x f x y x d y         

             f x y f y x f y x y d x f x y x d y         

           f x y f y x y d x f y x f x y x d y          

            f x y f y x y d x f y x f x y x d y          

   , ,x y y x
 

  



 

 

(ii)  

     

Since  is additive mapping of the ring  

  
   

 

  
   

 

(iii)  

  
   

 

      

(iv)  

   

Since  is additive mapping of a ring. 

   

  .  

Remark 2.3.12: Note that  is generalized reverse derivation of a ring  if and only if  

for all . 

Theorem 2.3.13:  21
 
Let  be a Jordan generalized reverse derivation of  then  for all 

. 

Proof: By Lemma 2.3.9  i   we get: 

    2.3.1
 
 

on the other hand, since  is additive mapping of the ring  we have: 

  2.3.2   

Comparing   2.3.1  and  2.3.2  we get 
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           ,x y z f x y z f z x y z d x y


         

          f x z y z f z x f z y z d x z d y          

f 

           f x z f z x z d x f y z f z y z d y          

   , ,x z y z
 

  

           ,x y z f x y z f y z x y z d x


         

           f x y f y x y d x f x z f z x z d x          

   , ,x y x z
 

  

            ,x y f x y f y x y d x
 

      

     

          f x y x y f y x f y x y d x y d x          

f 

           f x y f y x y d x f x y f y x y d x          

   , ,x y x y
 

  

f    , 0x y


 

, ,x y  

f   , 0x y


 

, ,x y  

         f x y y x f y x y d x f x y x d y         

f  

           f x y y x f x y f y x f x y f x y x d y           



 

 

            0f x y f y x y d x f x y f y x y d x            by Definition 2.3.10 we get , 

.  

Corollary 2.3.14:  21  Every  Jordan generalized reverse derivation of ring  is generalized reverse 

derivation of . 

Proof: By Theorem 2.3.13 we get  and Remark 2.3.12 the proof done.  

Proposition 2.3.15:  21  Every  Jordan generalized reverse derivation of a 2-torision free ring where 

is Jordan generalized triple reverse derivation of . 

Proof:  Let  be a Jordan generalized reverse  derivation of  , replace  by  in Lemma 

2.3.9  i  we get  

 

 

             f y x x y d x x y x d x f x x y x d y x x y d x f x x y                   

        2.3.3   

On the other hand: 

 

    f x x y y x x x y x x y x           .    2.3.4   

Comparing  2.3.3  and  2.3.4 , and since  we get  

 

Since  is a 2-torision free then we have  

 .  

Definition 2.3.16:  20  Let  be a ring and  be a family of additive mappings of   such 

that 0f id  then  is called generalized higher reverse derivation of  if there exists a higher reverse 

derivation of  such that for all  we have : 
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 , 0x y


 

 



 , 0x y


 

 

x y z x y z    

f  y  x y y x 

             f x x y y x x y y x x f x x y x y x x y x y x x                   

        f x x y x y x x y x y x x          

               f y x x y d x x f x x y x d x y f x x y x d x y                

     f x y x x d y x    

         x d y x x y d x f x y x x d x y x x d y             

      f x x y y x x y y x x f x x y x y x x y x y x x                   

x y z x y z   

          2 2f x y x x y x f x y x f x x y x d y x x y d x               



       f x y x f x x y x d y x x y d x         

   i i
F f


 

F 

 i i
D d


  n



 

 

      n i j

i j n

f x y f y d x 
 

       2.3.5
 
 

For every . 

is called a Jordan generalized higher reverse derivation of   if there exists a Jordan higher reverse 

derivation of  such that for all  we have : 

         n i j

i j n

f x x f x d x 
 

       2.3.6
 
 

For every .  

is said to be a Jordan generalized triple higher reverse derivation of   if there exists a Jordan triple 

higher reverse derivation  of   such that for all   we have : 

     2.3.7   

For every , , ,x y    . 

Example 2.3.17: Let  be a generalized higher reverse derivation on a ring  then there exists a 

higher reverse derivation  of  such that  

     

Then by Example 2.3.3 we define  be a family of additive mappings of  such that 

 then  is higher reverse derivation of . 

Let  be a family of additive mappings of  defined by  then  is a 

generalized higher reverse derivation of  . 

It is clear that every generalized higher reverse derivation of a  ring  is Jordan generalized 

higher reverse derivation of  , but the converse is not true in general. 

Lemma 2.3.18:  20  Let  be a ring and let  be a  Jordan generalized higher  reverse 

derivation of  then for all  and , the following statements hold:  

(i)  

In particular if  y Z  . 
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, ,x y  

F 

 i i
D d


  n

,x  

F 

 i i
D d


  n

         
i n

n n i j r

i j r n

f x y x f x x y f x d y d x     
  

  

 i i
F f


 R

 i i
d f


 R

     n i j

i j n

f xy f y d x
 

 

 i i
D D


 

      , ,n n nD a b d a d b D 

 i i
F f


        , ,n n nF a b f a f b F





   i i
F f




 , ,x y z ,  

         
i n

n i j i j

i j n

f x y y x f y d x f x d y   
 

  



 

(ii) 
  

 
 

(iii)  

(iv) 
  

 
 

(v)  

(vi)   

  

Proof: (i) Replace  x y  for x  and y  in Definition  2.3.16 (2.3.5) we get:  

        n i j

i j n

f x y x y f x y d x y 
 

       

                i j i j i j i j

i j n

f x d x f y d x f x d y f y d y   
 

        2.3.8   

On the other hand:  

          n n n nf x y x y f x x x y y x y y f x x y y f x y y x                    

                    i j i j n

i j n

f x d x f y d y f x y y x   
 

        2.3.9  

Comparing  2.3.8  and  2.3.9  we get: 

         n i j i j

i j n

f x y y x f y d x f x d y   
 

   . 

(ii) Replacing x y y x   for y  in  2.3.18(i) we get: 

             n nf x x y y x x y y x x f x x y x y x x y x y x x                      

                 nf x x y x y x x y x y x x             

               i j i j i j i j

i j n

f y d x x f x d x y f x d x y f x d y x       
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i n

n n i j r n

i j r n

f x y x x y x f x x y f x d y d x f x x y         
  

   

     
i n

i j r

i j r n

f x d y d x 
  

 

         
i n

n n i j r

i j r n

f x y x f x x y f x d y d x     
  

  

           
i n

n n i j r n

i j r n

f x y z z y x f z x y f z d y d x f x z y         
  

   

     
i n

i j r

i j r n

f x d y d z 
  

 

         
i n

n n i j r

i j r n

f x y z f z x y f z d y d x     
  

  

           
i n

n n i j r n

i j r n

f x y z z y x f z x y f z d y d x f x z y         
  

   

     
i n

i j r

i j r n

f x d y d z 
  

 



 

                       i j r i j r i j r i j r

i j r n

f y d x d x f x d y d x f x d y d x f x d x d y       
  

   

                 
i n i n

n i j r n i j r n

i j r n i j r n

f y x x f y d x d x f x x y f x d y d x f x x y         
     

     

             
i n i n

i j r n i j r

i j r n i j r n

f x d y d x f x y x f x d x d y     
     

              2.3.9  

On the other hand:  

        n n nf x x y y x x y y x x f x x y x y x x y x y x x f y x x                      

                  2.3.10
i n i n

i j r n i j r n

i j r n i j r n

f y d x d x f x y x f x d x d y f x y x x y x         
     

     

Comparing  2.3.9  and  2.3.10  we get the require result. 

(iii) Replacing   for   in 2.3.18(ii) we have: 

           2 2
i n

n n n i j r

i j r n

f x y x x y x f x y x f x x y f x d y d x         
  

 
    

 
   

Since   is 2-torsion free then we get: 

         
i n

n n i j r

i j r n

f x y x f x x y f x d y d x     
  

   .  

(iv) Replacing x z  for x  in 2.3.18(iii) we have: 

                
i n

n n i j r n

i j r n

f x z y x z f x z x z y f x z d y d x z f x x y       
  

        

               
i n i n

i j r n i j r n

i j r n i j r n

f x d y d x f z x y f z d y d x f x z y       
     

       

             
i n i n

i j r n i j r

i j r n i j r n

f x d y d z f z z y f z d y d z     
     

           2.3.11  

On the other hand: 

        n n nf x z y x z f x y x x y z z y x z y z f x x y                   

                  2.3.12
i n i n

i j r n i j r n

i j r n i j r n

f x d y d x f z z y f z d y d z f x y z z y x         
     

     

Comparing  2.3.11  and  2.3.12  we get the require result. 
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(v) Replace  x z  for x  in Definition 2.3.16(2.3.7) we have:

                
i n

n n i j r n

i j r n

f x z y x z f x z x z y f x z d y d x z f x x y       
  

        
 

                 
i n i n

i j r n i j r n

i j r n i j r n

f x d y d x f z x y f z d y d x f x z y       
     

      

             
i n i n

i j r n i j r

i j r n i j r n

f x d y d z f z z y f z d y d z     
     

            2.3.13  

On the other hand: 

        n n nf x z y x z f x y x x y z z y x z y z f x y x z y x z y z                       

                 
i n i n

n n i j r n i j r

i j r n i j r n

f x y z f x x y f x d y d x f x z y f x d y d z         
     

     

         
i n

n i j r n

i j r n

f z z y f z d y d z f x y z     
  

             2.3.14  

comparing  2.3.13  and  2.3.14  we get: 

         
i n

n n i j r

i j r n

f x y z f z x y f z d y d x     
  

   . 

(vi) Replace  x z  for x  in Definition 2.3.16(2.3.7) we have: 

              
i n

n n i j r

i j r n

f x z y x z f x z x z y f x z d y d x z     
  

       

                  
i n

n n i i j r r

i j r n

f x f z x z y f x f z d y d x d z   
  

        

             
i n

n n n n i j r

i j r n

f x x y f z x y f x z y f z z y f x d y d x         
  

       

                 i j r i j r i j rf z d y d x f x d y d z f z d y d z               2.3.15  

On the other hand: 

        n n nf x z y x z f x y x x y z z y x z y z f x y x z y z                      

           
i n

n n i j r n

i j r n

f x y z z y x f x x y f x d y d x f z z y         
  

       

       
i n

i j r n

i j r n

f z d y d z f x y z z y x     
  

                        2.3.16  
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comparing  2.3.15  and  2.3.16  we get the require result.   

Definition 2.3.19:
  20  Let  be a Jordan generalized higher reverse derivation of a ring , 

then for all  and  we define: 

  

Lemma 2.3.20:  20  If   is a Jordan generalized higher reverse derivation of ring , then for 

all , and  we get: 

(i)  

(ii)  

(iii)  

(iv)  

Remark 2.3.21: Many notions on the Jordan generalized reverse derivations on rings are generalized to 

the Jordan generalized higher reverse derivations on rings.  

Remark 2.3.22:  20  Note that  i i
F f


  is a generalized higher reverse derivation of a  ring   if and 

only if  , 0n x y


   for all , ,x y    and n . 

Theorem 2.3.33:  20
 
Let  i i

F f


  be a Jordan generalized higher reverse derivation of a ring   

then  , 0n x y


   for all , ,x y    and n . 

Proof: By Lemma 2.3.18(i) we get: 

      2.3.17
 

On the other hand:  

Since nf  is additive mapping of a  ring   we have: 

            
i n

n n n n i j

i j n

f x y y x f x y f y x f x y f x d y     
 

          2.3.18  

Compare  2.3.17  and  2.3.18  we get:  

             0
i n i n

n i j n i j

i j n i j n

f x y f y d x f x y f y d x   
   

       

By Definition 2.3.19 we get:  

 , 0n x y
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 i i
F f


  

,x y 

       ,n n i j

i j n

x y f x y f y d x


  
 

  

 i i
F f


  

, ,x y z ,   n

   , ,n nx y y x
 

  

     , , ,n n nx y z x z y z
  

    

     , , ,n n nx y z x y x z
  

    

     , , ,n n nx y x y x y
   

  

 





         
i n

n i j i j

i j n

f x y y x f y d x f x d y   
 

  



 

Chapter Three 

Derivations On Prime Rings 

3.1 Generalized  Derivations On Prime Rings 

In this section, we prove that a prime ring  is commutative if   is a generalized derivation on 

 with an associated non-zero derivation on such that  is centralizing and commuting on a left 

ideal  of  .  

A mapping f  is said to be commuting on a left ideal J  of    if   , 0f x x

    for all ,x J    

and f  is said to be centralizing if    ,f x x Z

     for all ,x J   .   

Remark 3.1.1: Let  be a prime ring and  a nonzero left ideal of . If  is a nonzero derivation 

on , then  is also a nonzero derivation on .  

Remark 3.1.2: Let  be a prime ring and  a nonzero left ideal of . If  is commutative, then  

is also commutative. 

Lemma 3.1.3:  13  Suppose  is a prime ring such that , for all , 

and  be a derivation. For an element , if for all  and , then either 

 or . 

Proof: By our assumption, for all  and . We replace  by , then 

       0 0 0a D x y a D x y a x D y a x D y              for all  and . If  is 

not zero, that is, if  for some , then by definition of prime ring, .   

Lemma 3.1.4:  13  Suppose  is a prime ring such that , for all , 

and J a nonzero left ideal of  . If   has a derivation D  which is zero on J , then D  is zero on  . 

Proof: By the hypothesis,   0D J  . Replacing J  by J , we have  0 D J 

     D J D J D J       . Hence by Lemma 3.1.3, D  must be zero, since J  is nonzero. 

Lemma 3.1.5:  13  Suppose   is a prime  ring such that , for all , 

and J  a nonzero left ideal of  . If J  is commutative, then   is commutative. 

Proof: Suppose that x  is a fixed element in J . Since J  is commutative, so for all y J  and  , 

 , 0x y

  and consequently,  , 0x J


 . Hence by Lemma 3.1.4,  , 0x J


  on   and  x Z  . Thus 

 , 0x


   for every x J  and hence  , 0J y

  for all y . Again Lemma 3.1.4,  , 0J y


  and 

 y Z   for all y . Therefore   is commutative.  
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  f

 D  f

J 

  J  D

 D J

  J  J 

  x y z x y z    , ,x y z ,  

:D  a   0a D x  x 

0a  0D 

  0a D x  x  x x y

,x y ,   D

  0D y  y  0a 

  x y z x y z    , ,x y z ,  

x y z x y z    , ,x y z ,  



 

Lemma 3.1.6:  13  Let   be a prime  ring and :f   be an additive mapping. If f  is centralizing 

on a left ideal J  of   , then    f a Z   for all  a J Z  . 

Proof: By our assumption, f  is a centralizing on a left ideal J  of   . Thus we have,    ,f a a Z

     

for all a J  and  . By linearization, for all ,a b J  and  , we have 

      , ,f a b f b a Z
 
                       3.1.1  

If  a Z  , then equation (3.1.1) implies    ,f a b Z

    . Now replacing b  by  f a b , we have 

     ,f a f a b Z


     , this implies      ,f a f a b Z


     . If   , 0f a b

   , then 

   f a C J , the centralizer of J  in   and hence    f a Z  . Otherwise, if   , 0f a b

   , then 

   f a Z  .     

Theorem 3.1.7:  13  Let   be a prime  ring such that x y z x y z    , for all , ,x y z , ,   and 

D a nonzero derivation on  . If f  is a generalized derivation on a left ideal J  of    such that f  is 

commuting on J , then   is commutative. 

Proof: By our hypothesis, f  is commuting on J . Thus we have   , 0f a a

    for all a J  and  . 

By linearizing this relation, we get    , , 0f a b f b a
 
        . Putting b b a and simplifying, we obtain 

  , 0b D a a


    . Replacing b  by r b , we have    , 0r a a D a

    for all ,a J r   and , ,    . 

Since   is prime  ring, thus  , 0r a

  or   0D a  . Therefore for any a J , either  a Z   or 

  0D a  . Since D  is nonzero derivation on  , then by Lemma 3.1.4, D  is nonzero on J . Suppose 

  0D a   for some a J , then  a Z  . Let c J  with  c Z  . Then   0D c   and  a c Z   , 

that is,   0D a c   and so   0D a  , which is a contradiction. Thus  c Z   for all c J . Hence J  is 

commutative and hence by Lemma 3.1.5,   is commutative.  

Theorem 3.1.8:  13  Let   be a prime  ring such that x y z x y z    , for all , ,x y z , ,   and 

J  a left ideal of   with   0J Z   . If f  is a generalized derivation on   with associated nonzero 

derivation D  such that f  is commuting on J , then   is commutative. 

Proof: We claim that   0Z    because of f  is commuting on J  and the proof is complete. Now by 

linearization, for all ,a b J  and  , we have  

         , ,f a b f b a Z
 
          , 

If we replace x  by c b  with  0 c Z   , then we have 

       , , ,f c b b c D b b c f b b Z
  
                . From lemma 3.1.3,    f c Z   and hence 

     , ,c D b b c f b b Z
 

          . 
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Since f  is a centralizing on J , we have    ,c f b b Z


      and consequently    ,c D b b Z


    

As c  is nonzero, Lemma 1.3.4 follows that    ,D b b Z

    . This implies D  is centralizing on J  and 

hence we conclude that   is commutative.  

Remark 3.1.9: Let   be a prime  ring such that   and let   be the set of all ideals of   

which have zero annihilator in  , in this case, the set   is closed under multiplication. Indeed, let U  and 

V  be in   . The equality 0U V x   for x  and all    yields 0rV x Ann U    ,i.e, 0V x   

and so 0rx Ann V   which implies 0x     Then  we  get  that  U V  .                                                               

 Denote     , : 0  is an ideal of   and   :  is a right -module homomorphism for all U f U f U U      

Define a relation  on   by      , , 0  such that   on U f V g W U V f g W    . 

Since the set   is closed under multiplication, it is possible to find such an ideal W   and so ,, ,,  

is an equivalence relation. This gives a chance for us to get a partition of  . We then denote the equivalence 

class by   ˆ,Cl U f f , where     ˆ : | , ,f g V U f V g  , and denote by Q  the set of all equivalence 

classes. Then Q  is a  ring, which is called the quotient  ring of  . The set 

 |  for all   and C g Q g f f g f Q         is called extended centroid of  .  

Lemma 3.1.10: Suppose that the elements ia , ib  in the central closure of a prime  ring   satisfy 

0i i i ia x b    for all x  and ,i i   . If 0ib   for some i , then ,sia  are C  dependent, where C  is 

the extended centroid of  . 

Proof: Let   be a prime  ring and let C C   be the extended centroid of  . If ia  and ib  are non-zero 

elements of   such that 0i i i ia x b    for all x  and ,i i   , then ,sia (also ,sib ) are linearly 

dependent over C . Moreover, if a x b b x a     for all x  and ,   , where ,a b  are fixed and 

0a  , then there exists C  such that a b  for  . Clearly, the lemma is proved.   

Lemma 3.1.11:  30  Let   be a prime  ring of characteristic 2. Let 1d  and 2d  two non-zero derivations 

of   and right module homomorphisms. If  1 2 0d d x       3.1.2  for all x , then there exists 

C   such that    2 1d x d x  for all   and x . 

Proof: Let ,x y  and  . Replacing x  by x y  in  3.1.2 , it follows from 2char  that for all 

,x y  and    

           1 2 2 1d x d y d x d y       3.1.3  

Replacing x  by x z  in  3.1.3 , we get  
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       1 2 2 1d x z d y d x z d y        3.1.4  

for all x  and   . Now, if we replace y  by x  in  3.1.4 , then we obtain  

           1 2 2 1d x z d x d x z d x                   3.1.5  

for all x  and ,   . If  1 0d x  , then there exists  x C  such that      2 1d x x d x   for all 

x  and  by Lemma 3.1.10. Thus, if    1 10d x d y  , then  3.1.4  implies that  

            1 2 0y x d x z d x           3.1.5  

Since   is a prime  ring, we conclude by using Lemma 3.1.3 that    y x   for all ,x y . Hence 

we proved that there exists C  such that    2 1d x d x  for all x  and   with  1 0d x  . On 

the other hand, if  1 0d x  , then  2 0d x  as well. Therefore,    2 1d x d x  for all x  and  . 

This complete the proof.  

Proposition 3.1.12:  30  Let   be a prime  ring of characteristic 2 and d  a non-zero derivation of  . If 

   d x Z   for all x , then there exists  m C   such that      d m m d z   for all ,m z  

and   or   is commutative. 

Proof: Since    d x Z   for all x , we have  

      , 0d x y

    for all ,x y  and      3.1.6  

Replacing x  by x z  in  3.1.6 , we have  

         3.1.7  

for all , ,x y z  and ,   . Replace z  by  d z  in  3.1.7 , we obtain 

       2 , 0,  , , ,  ,d z x y x y z


          3.1.8  

Now, substituting z m  for z  in  3.1.8 , it follows 2char  that  

       2 , 0d z m x y


   , , , , ,  , ,x y z m        3.1.9
 

Since   is a prime  ring, we obtain 

     2 0,  zd z     or  , 0,  , ,x y x y


      3.1.10  

from  3.1.10 , if  2 0d z   for all z , then replacing z  by z m  in this last relation, it follows from 

   d x Z   that  
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       , , 0d x z y d z x y
 

  



 

 

        ,  , ,d z d m d m d z z m          3.1.11  

Replacing z  by z n  in  3.1.11 , it follows from    d x Z   that  

           ,  , , , ,d z n d m d m n d z z m n           3.1.12  

If   0d z  , then there exists  m C   such that      d m m d z   for all ,z m  and   by 

Lemma 3.1.10. on the other hand, it follows from  3.1.10  that if  , 0x y

  for all ,x y  and   , 

then   is commutative.   

Theorem 3.1.13:  30  Let   be a prime  ring of characteristic 2, 1d  and 2d  two non-zero derivations of 

  and U  a non-zero ideal of  . If  

     1 2 0d d u   for all u U      3.1.13  

then there exists C   such that    2 1d x d x  for all   and x . 

Proof: Let ,u v U  and   . Replacing u  by  2d u v in  3.1.13 , we get  

       2

2 1 0d u d v   for all ,u v U  and      3.1.14  

Since 1 0d  , it follows from Lemma 3.1.3 that  2

2 0d u   for all u U , so from 2char  that 2

2 0d  . 

Now, substituting  2u d x  for u  in  1 , we get  

        2 1 2 0d u d d x   for all ,u U x   and    3.1.15  

Since 2 0d  , we get   1 2 0d d x   for all x  by Lemma 3.1.3. Hence there exists C   such that 

   2 1d x d x  for all   and x  by Lemma 3.1.11.  

Theorem 3.1.14:  30  Let   be a prime  ring, U a non-zero right ideal of   and d  a non-zero 

derivation of  . If  

      0d u a   for all u U  and       3.1.16  

Where a  is a fixed element of  , then there exists an element q  of Q  such that 0q a   and 0q u   for 

all u U  and   . 

Proof: Let u U , x  and   . Since U is a right ideal of  , we have u x U  . Replacing u  by 

u x  in  3.1.16 , we get  
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    0d u x a u d x a           3.1.17  

for all u U , x  and ,   . Hence     0d u x a m u d x a m        for any m  and  , 

and so        d u x a m u d x a m        . Therefore, for any v V a    which is a non-

zero ideal of  , we have  

       d u v u f v         3.1.18  

for all .  f v  is independent of u  but it is dependent on v . Since   is a prime  ring,  f v  is 

well-defined and unique for all v V . Note that v y V   for any y , v V  and  . Replacing v  by 

v y  in  3.1.18  we get 

         d u v y u f v y          3.1.19  

for all y  and so by using  3.1.18  and  3.1.19 , we have  

     d u v y u f v y        u f v y u f v y       

               u f v y u f v y       

                  0u f v y f v y       

which implies from Theorem 1.3.3 that  

       f v y f v y         3.1.20  

for all y , v V  and  . It follows from  3.1.20  that :f V   is a right module 

homomorphism. In this case,  ,q Cl V f Q  . Moreover,  f v q v  for all v V  and  . Let x

, v V , u U  and ,   . Replacing v  by x v  in  3.1.18 , we get 

           d u x v u f x v u q x v             3.1.21  

Also, replacing u  by u x  in  3.1.18 , we get  

       d u x v u x q v u d x v             3.1.22  

Now, replacing   by   and replacing   by   in  3.1.22 , we get 

       d u x v u x q v u d x v             3.1.23  
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Thus, from  3.1.21  and  3.1.22  we obtain  

       0u q x x q d x v           3.1.24  

for all , ,x v V u U    and ,   . Hence  d x x q q x    for all x  and ,    by Theorem 

1.3.3. now, we shall prove that q  can be chosen in Q  such that 0q a   and 0q u   for all u U  and 

  . Let  and  ,x d u q u u q     and  d x q x x q   . Then we have 

      0 d u x a q u x u x q a         . Thus, q u x a u x q a      . If 0q a  , then 0q u x a    , 

and so since   is prime  ring, we get  0q U  . On the other hand, if 0q a  , then 0q u  . In fact, 

if 0q u  , then 0q a   since q u x a u x q a      . Thus, we may suppose that 0q a   and 0q u   for 

all u U  and   . In this case, we get q u x a u x q a       for all ,x u U   and , ,    . It 

follows from Lemma 3.1.10 that there exists C   such that q a a   and q u u   for all u U  and 

, ,    . Hence, if q q    , then 0q a   and  0q U  . This completes the proof.   

Lemma 3.1.15:
  30  Let   be a prime  ring, U a non-zero right (resp. left) ideal of   and a . If  

 0U a   (resp.  0a U  ), then 0a  .    

Theorem 3.1.16:
  30  Let   be a prime  ring with 2char , U a non-zero right ideal of   and d  a 

non-zero derivation of  . Then the subring of   generated by  d U  contains no non-zero right ideals of 

  if and only if    0d U U  . 

Proof: Let A  be the subring generated by  d U . Let S A U , u U , s S  and   . Then 

     d s u d s u s d u A     , and so we have  d s u S  . Thus  d S U  is a right ideal of  . In this 

case,    0d S U   by hypothesis.      d u a d u a u d a S      and  d u a S   where ,u U a A  . 

Thus, we have  u d a S  . Therefore,          20 d u d a u u d a d u d a u       . Since   is a 

prime  ring, it follows from Lemma 3.1.15 that  

         2 0u d a d u d a         3.1.25  

for all ,u U a A   and   . Replacing u  by u v  where ,v U    in  3.1.25  we get,  

        0d u v d a           3.1.26  

Since   is a prime  ring, we get    0d U U   or    0d A U  . If     0d A U  , then 

   2 0d U U  .  
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Let ,u v U  and   , then   0 d d u v  2u d v          2d u d v d v d u d u v     , and so we 

have     0d u d v   for all ,u v U  and    by 2char . Replacing u  by u w  where ,w U    

in the last relation, we have     0d u w d v    which yields   0d u v   for all ,u v U  and   .  

 Conversely assume that    0d U U  . Then  0A U  . Since   is a prime  ring, A  contains 

no non-zero right ideals.   

Theorem 3.1.17:  30  Let   be a prime  ring with 2char , U a nonzero right ideal of  and 1 2,d d

are two non-zero derivations of  . If    1 2 0d d U  , then there exists two elements ,p q  of Q  such that 

 0q U   and  0p U  . 

Proof: If    1 2 0d d U  , then    1 0d A   where A  is a subring generated by  2d U . Since 0d  , A  

contains no non-zero right ideals of   . Thus, from Theorem 3.1.16, we have  2 0d u v   for all ,u v U  

and   . Also, there exists q Q  such that  0q U   by Theorem 3.1.14. Therefore    2 2d u v u d v   

for all ,u v U  and   . In this case,         1 2 1 2 1 20 d d u v d u d v d u d v     , and since   is a 

prime  ring, we get  2 0d u v   for all ,u v U  and   . Again, by  Theorem 3.1.14, there exists 

p Q  such that  0p U  . This completes the proof.    

Remark 3.1.18: (a) Consider the following example. Let R  be a ring. A derivation :d R R  is called an 

inner derivation  if there exists a R  such that    ,d x a x ax xa    for all x R . Let S  be the 2 2  

matrix ring over Galois field  20,1, ,w w , with inner derivations 1d  and 2d  defined by  

      1 2

0 1 0
, , ,

0 0 0 0

w
d x x d x x

      
       

      
 

for all x S . Then the characteristic of S  is 2  and we have 1 2 1 20, 0, 0d d d d   and 2

2 0d  . Also, if we 

take     1 2 , | a,b SS a b     and |  is an integer
0

n
n

  
    

  
,  

then   is a prime  ring of characteristic 2. Define an additive map 1 :D   by 

      1 1 1, ,D x y d x d y . Since      , , ,
0

n
x y a b nxa nxb

 
 

 
, therefore 1D  is a derivation on  . Similarly 

2 :D   given by       2 2 2, ,D x y d x d y  is a derivation. In this case, we have 

1 2 1 20, 0, 0D D D D    and 2

2 0D  . Thus we know that there exist two derivations 1 2,D D  of   such that 

   1 2 0D D    but    1 0D   
 
and    2 0D    . Therefore the condition of 2char  in 

Theorems 3.1.15 and 3.1.16 is necessary. 
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(b) In Theorems 3.1.14 and 3.1.17, if    a c b a c b     for all , ,a b c  and ,   , then 

   ,d x q x q x x q


     for all ,x    and for some q Q  is inner derivation and also 

   1 ,d x q x


  and    2 ,d x q x


  for all , ,x     and for some elements ,q p Q  are inner 

derivations . 

3.2 Permuting Tri-Derivation On Prime Rings 

Let   be a  ring. A mapping :D   is said to be tri-additive  if it satisfies: 

1.      , , , , , ,D x w y z D x y z D w y z   , 

2.      , , , , , ,D x y w z D x y z D x w z   , 

3.      , , , , , ,D x y z w D x y z D x y w   . 

for all , , ,x y z w . A tri-additive mapping D  is said to be permuting tri-additive  if 

           , , , , , , , , , , , ,D x y z D x z y D y x z D y z x D z x y D z y x      for all , ,x y z . A mapping 

:d   defined by    , ,d x D x x x  is called the trace  of D , where D  is a permuting tri-additive 

mapping. It is obvious that if D  is a permuting tri-additive mapping, then the trace of D  satisfies the 

relation 

           3 , , 3 , ,d x y d x d y D x x y D x y y         3.2.1  

for all ,x y . A permuting tri-additive mapping D  is called a permuting tri-derivation  if 

     , , , , , ,D x w y z D x y z w x D w y z     for all , , ,x y z w  and  . Then the relations 

       , , , , , ,D x y w z D x y z w y D w y z     

and  

       , , , , , ,D x y z w D x y z w z D w y z     

are fulfilled for all , , ,x y z w  and  . Let D  be a permuting tri-additive mapping of  , where   is 

a  ring. Since  

         0, , 0 0, , 0, , 0, ,D x y D x y D x y D x y    , 

We have  0, , 0D x y   for all ,x y . Thus  

         0 0, , , , , , , ,D y z D x x y z D x y z D x y z       , 

and so    , , , ,D x y z D x y z    for all , ,x y z . Therefore the mapping :d   defined by 

   , ,d x D x x x  is an odd function. 
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Example 3.2.1: For a commutative ring R , let  

0 0 0 | , ,

0 0 0

a b c

a b c R

  
  

    
  
  

 and 

0 0

0 0 0 |

0 0 0

R





  
  

    
  
  

. 

It is obvious that   and  are both abelian groups under matrix addition. Now it is easy to show that   is 

a  ring under matrix multiplication. A map :D   defined by 

1 1 1 2 2 2 3 3 3 1 2 30 0

0 0 0 , 0 0 0 , 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

a b c a b c a b c a a a         
        
        
        
        

 is a permuting tri-derivation. 

Lemma 3.2.2:  28  Let   be a 2,3-torsion free  ring and I a non-zero one-side ideal of  . Let D  be a 

permuting tri-derivation with the trace d . Consider the following conditions:  

i.   0d x   for all x I  

ii.  , , 0D x y z   for all , ,x y z I  

iii.  , , 0D m x y   for all ,x y I  and m  

iv.  , , 0D m n x   for all x I  and ,m n  

v.  , , 0D m n r   for all , ,m n r . 

Then (i) and (ii) are equivalent. Moreover if   is a prime  ring or 0rAnn I   (or 0lAnn I  ), the above 

conditions are all equivalent. 

Proof: Let I  be a right ideal of   and let , , , , ,m n r x y z I   and , ,    . Since   is 3-torsion free, 

it follows from  3.2.1  that  

     , , , , 0D x x y D x y y         3.2.2  

Writing y z  for y  in  3.2.2  and using the fact that   is 2-torsion free, we know that (i) and (ii) are 

equivalent. Replacing z  by z m  in (ii) implies that  

       0 , , , , , , , ,D x y z m D x y z m z D m x y z D m x y          3.2.3   

If   is a prime  ring then by Lemma 3.1.3, we get (ii) and (iii) are equivalent. If 0rAnn I  , then from 

 3.2.3  we get  (ii) and (iii) are equivalent. Replacing y  by y n  in (iii), we have 

        0 , , , , , , , ,D m x y n D m x y n y D m n x y D m n x          3.2.4   

 If   is a prime  ring then by Lemma 3.1.3, we get (iii) and (iv) are equivalent. If 0rAnn I  , then from 

 3.2.4  we get  (iii) and (iv) are equivalent. Replacing x  by x r in (iv), we have 
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       0 , , , , , , , ,D m n x r D m n x n x D m n r x D m n r          3.2.5  

If   is a prime  ring then by Lemma 3.1.3, we obtain  (iv) and (v) are equivalent. If 0rAnn I  , then 

from  3.2.5  we have  (iv) and (v) are equivalent. Similarly we can prove the result for a left ideal I .  

Theorem 3.2.3:  28  Let   be a 2,3-torsion free prime  ring, I  a nonzero ideal of  . Let 1D  and 2D  

be permuting tri-derivations of   with traces 1d  and 2d  respectively. If   1 2 , , 0D d x x x   for all x I , 

then 1 0D   or 2 0D  . 

Proof: Assume that   1 2 , , 0D d x x x   for all x I . For any ,x y I  we have  

      1 2 1 2, , , , 0D d x y x y x y D d x y x y x y         . 

Since   is 2-torsion free, it follows that  

           1 2 1 2 1 2 1 22 , , , , 3 , , , , 3 , , , ,D d x x y D d y x x D D x x y x x D D x x y y y    

  1 26 , , , , 0D D x y y x y       
 

 3.2.6  

for all ,x y I . Writing x y  for y  in  3.2.6 and using the fact that   is 3-torsion free, we get  

            1 2 1 2 1 2 1 2, , 4 , , 6 , , , , 6 , , , ,D d x y y D d x x y D D x x y x x D D x x y x y    

   1 23 , , , , 0D D x y y x x       
 

 3.2.7  

for all ,x y I . Writing x  for x  in  3.2.7 and using the fact that   is 2-torsion free, we get 

      1 2 1 24 , , 6 , , , , 0D d x x y D D x x y x x      3.2.8  

for all ,x y I . Replacing y  for x y  in  3.2.8 and using the hypothesis and the fact that     is 2,3-

torsion free, we get 

        2 1 1 2, , , , 0d x D x x y d x D x x y        3.2.9  

for all ,x y I and  . Writing y z  for y  in  3.2.9 implies that  

        2 1 1 2, , , , 0d x y D x x z d x y D x x z         3.2.10  

for all , ,x y z I and ,   . Writing x  for z  in  3.2.10 and using Lemma 1.4.8, we have  

    1 2 0d x y d x           3.2.11
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for all , ,x y z I and ,   . In this case, suppose that 1d  and 2d  are both different from zero. Then there 

exist 1 2,x x I  such that  1 1 0d x   and  2 2 0d x  . In particular,    1 1 2 1 0d x y d x    for all y I and 

,   . Since  1 1 0d x   and   is prime  ring we have  2 1 0d x  . Similarly, we get  1 2 0d x  . 

Then the relation  3.2.10  reduces to the equation    1 1 2 1 1, , 0d x y D x x z    for all ,y z I  and ,   . 

Using this relation and Lemma 3.1.3 we obtain that  2 1 1, , 0D x x z   for all z I  because of  1 1 0d x  (the 

mapping  2 1 1, ,z D x x z  is a derivation ). Thus, we have  2 1 1, , 0D x x z  . In the same way, we get 

 1 1 1, , 0D x x z  . Substituting 1 2x x  for z , we obtain 

    1 1 1 2d z d x x         1 1 1 2 1 1 1 2 1 1 2 23 , , 3 , ,d x d x D x x x D x x x     1 1 0d x   

and 

    2 2 1 2d z d x x         2 1 2 2 2 1 1 2 2 1 2 23 , , 3 , ,d x d x D x x x D x x x     2 2 0d x   

Therefore we have  1 0d z   and  2 0d z  , a contradiction. Hence, we get  1 0d x   for all x I  or 

 2 0d x   for all x I . Thus 1 0D   or 2 0D  .   

Remark 3.2.4: Let   be a 2,3-torsion free prime  ring. Let D  be permuting tri-derivation of   with 

trace d . If   0a d x   for all ,x   , where a  is a fixed element of  , then either 0a   or 0D  . 

Theorem 3.2.5:  28  Let   be a prime  ring of characteristic not 2 and 3, 5-torsion free, I a non-zero 

ideal of  . Let 1D  and 2D  be permuting tri-derivations of  and let 1d  and 2d  be traces of 1D  and 2D , 

respectively, such that  2d I I . If 0lAnn I   and     1 2 2, , 0D d x d x x   for all x I , then 1 0D  or 

2 0D  . 

Proof: For any ,x y I , we have  

          1 2 2 1 2 2, , , , 0D d x y d x y x y D d x y d x y x y             

Since 2Char , it follows that  

          1 2 2 1 2 22 , , 6 , , , ,D d y d x x D D x x y d x x   

           1 2 2 1 2 26 , , , , 18 , , , , , ,D D x y y d y x D D x x y D x y y x    

           1 2 2 1 2 2, , 6 , , , ,D d x d x y D D x y y d x y    

           1 2 2 1 2 26 , , , , 9 , , , , , ,D D x x y d y y D D x y y D x y y y   

      1 2 29 , , , , , , 0  for all ,D D x x y D x x y y x y I   .    3.2.12  
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Writing 2x  for x  in  3.2.12  and using the fact that 2Char  and   is 3-torsion free, we get  

          1 2 2 1 2 22 , , 30 , , , ,D d y d x x D D x x y d x x  

           1 2 2 1 2 25 , , 18 , , , , , ,D d x d x y D D x x y D x y y x      3.2.13  

           1 2 2 1 2 26 , , , , 9 , , , , , , 0  for all , .D D x y y d x y D D x x y D x x y y x y I     

Writing 2x  for x  in  3.2.13  and using the fact that 2Char  and   is 3,5-torsion free, we get  

          1 2 2 1 2 26 , , , , , , 0  for all , .D D x x y d x x D d x d x y x y I     3.2.14  

Replacing y  for y x  in  3.2.14  implies that 

         2 1 2 1 2 2, , , , , , 0 for all , , .D x x y D d x x x D d x x y d x x y I     
 

 3.2.15  

Replacing y  for x y  in  3.2.15  induces  

         2 1 2 1 2 2, , , , 0 for all , , , .d x y D d x x x D d x x x y d x x y I          3.2.16  

 We now show that   1 2 , , 0D d x x x   for all x I . Assume that there exists 1x I  such that 

  1 2 1 1 1, , 0D d x x x  . 

 Replacing x  by 1x  in  3.2.16 , then  2 1 0d x   by Lemma 1.4.8. Therefore 

    1 2 1 1 1 1 1 1, , 0, , 0D d x x x D x x  , a contradiction. It follows from Theorem 3.2.3 that  1 0D   or 2 0D  . 

  

Corollary 3.2.6: Let   be a prime  ring of characteristic not 2, 3 and 5, 7-torsion free, I a nonzero ideal 

of  . Let 1D  and 2D  be permuting tri-derivations of  and let 1d  and 2d  be traces of 1D  and 2D , 

respectively, such that  2d I I . If     1 2d d x f x  for all x I  then 1 0D   or 2 0D  , where a 

permuting tri-additive mapping :F   and f  is the trace of F . 
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3.3 Jordan Triple Higher Derivation On Prime Rings 

In this section we introduce the concept of triple higher derivation on a prime  ring  and prove 

that every  Jordan triple higher derivation on a prime  ring   of characteristic different from two is a 

triple higher derivation on   and then, it is shown that every  Jordan triple higher derivation is a higher 

derivation on  . 

Definition 3.3.1:  3  Let   be a  ring and  n n
D d


  be a family of additive mappings :nd   

such that 0d I . Then D  is said to be  

a) a higher derivation  on   if for each n , 

     n p q

p q n

d a b d a d b 
 

    for all ,a b , and  ; 

b) a Jordan higher derivation  on   if for each n , 

     n p q

p q n

d a a d a d a 
 

    for all a , and  ; 

c) a triple higher derivation  on   if for each n , 

       n p q r

p q r n

d a b c d a d b d c   
  

    for all , ,a b c , and ,   ; 

d) a Jordan triple higher derivation  on   if for each n , 

       n p q r

p q r n

d a b a d a d b d a   
  

    for all ,a b , and ,   . 

Example 3.3.2:
  3  By Example 1.1.2 (2),  let :f R R  be a triple derivation on R . Now define 

:F   such that        , ,F x y f x f y . Then F  is a triple derivation on  . In fact, if 

      1

1 1 2 2 3 3

.1
, , , , , ,

0

n
a x y b x y c x y 

 
      

 
 and 

2.1

0

n


 
  
 

, then 

 1 1 2 2 3 1 1 2 2 3,a b c x n x n x x n x n y   , and then we get        F a b c F a b c a F b c a b F c          , for 

all , ,a b c  and ,   . 

Define 
!

n

n

F
d

n
 , for all n , where F  is a triple derivation on  . 

Claim:  n n
D d


  is a triple higher derivation on  . 

We shall use induction on n  to prove the claim: 

For  
 0

00,
0!

F a b c
n d a b c a b c

 
      . 

For  
 

       
1

11, .
1!

F a b c
n d a b c F a b c F a b c a F b c a b F c

 
               Suppose that, 
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!

m

m

F
d

m
  defines a triple higher derivation on   for each m n . Consider, 

 
   

 
  

1

1

1 1

! 1 !

n n

n n

F a b c F a b c
d a b c F F d a b c

n n n n

   
   





  
        

. Applying the hypothesis of 

induction on 1nd   , we have  

       
1

n p q r

p q r n

F
d a b c d a d b d c

n
   

   

   

     

1 ! ! !

p q r

p q r n

F a F b F cF

n p q r
 

   

 

                 1 1 1

1

1

! ! ! ! ! ! ! ! !

p q r p q r p q r

p q r n

F a F b F c F a F b F c F a F b F c

n p q r p q r p q r
     

  

   

 
   

 


                     1 1 1

1

1
1 1 1p q r p q r p q r

p q r n

d a d b d c p d a d b d c q d a d b d c r
n

       

   

     

             
1 1

1 1 1 1

0 0, 0 0,

1
1 1

j jn n

i j i n j i j i n j

j i i j j i i j

d a d b d c i d a d b d c j i
n

   
 

       

   

    
        

    
   

      
1

0 0,

jn

i j i n j

j i i j

d a d b d c n j 


 

 

  
   

  
 

                 
1 12 1 2

1 1

2 2 2 2 2

1 1 1j jn n n

i j i n j i n i i j i n j

j i i j i

d a d b d c i d a d b d c i d a d b d c
n n n

     
   

     

    

    

             
2 1 1

1 1

2 2 2

1 1 1n n n

i n i j n j j n j

i j j

d a d b d c d a b d c j d a b d c
n n n

     
  

   

  

    

             
2

1 1

2

1 1 1 1
1

n

j n j n n n

j

d a d b cj d a b cn d a d b c n d a b c
n n n n

       


 



    

             
2

1 1

2 1 1

1 1 1 jn n

n j n j i j i n j

j j i

d a d b c d a d b c d a d b d c
n n n

     


   

  

     

                 
12 2 2

1 1 1 1

2 1 0 0

1 1 1jn n n

i j i n j i n i i n i

j i i i

d a d b d c i d a d b d c n d a d b d c
n n n

     
  

     

   

    

                   
2 1 1

1 1 1 2 1

2 0 2

1 1 1n n n

i n i n i n j i n i

i i i

d a d b d c i d a d b d c d a d b c d a d b ci
n n n

       
  

    

  

     

                   
1 1

1 1 1 1 1 1

0 0 0

1 1jn n

n i j i n j n i n i

j i i

d a d b c d a d b d c d a b d c d a d b d c
n n

       
 

     

  

    

     
1

1 1

0

1 n

i n i

i

d a d b d c
n

 


 



             
1 1

0 0 0

jn n

i j i n j n i n i

j i i

d a d b d c d a b c d a d b c     
 

  

  

   

. 
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     p q r

p q r n

d a d b d c 
  

 



 

 

Thus, the family where, defines a triple higher derivation on .  

             Similarly, if  is considered to be a Jordan triple derivation on  then using similar 

procedure one can find an example of Jordan triple higher derivation on . 

Remark 3.3.3: In the above example if we consider  as derivation (resp. Jordan derivation), then 

using similar arguments as given in the above example with necessary variations, one can construct an 

example of higher derivation (resp. Jordan higher derivation) on .  

 It can be easily seen that every triple higher derivation is a Jordan triple higher derivation. But the 

converse is not true in general. In the present section we establish the converse of the above statement under 

certain conditions. 

Definition 3.3.4:  3  Let  be a ring. Then for all  and  we define  

  . 

Lemma 3.3.5:  3  If  is a ring, then for all  and  

i.  

ii.  

iii.  

iv.  

v.  

vi. . 

Proof: direct application of Definition 3.3.4.   

Lemma 3.3.6:  3  Let  be a ring and be a Jordan triple higher derivation on . Then for 

all , and for all , we have  

  

Proof: Since . Linearizing on  we get, 

. Computing and canceling the like terms from 

both sides, the proof will be complete.   
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 n n
D d




!

n

n

F
d

n
 

:f R R R



:f R R



  , ,a b c ,  

 
,

, ,a b c a b c c b a
 

    

  , , ,a b c d ,  

   
, ,

, , , , 0a b c c b a
   

 

     
, , ,

, , , , , ,a c b d a b d c b d
     

  

     
, , ,

, , , , , ,a b c d a b c a b d
     

  

     
, , ,

, , , , , ,a b d c a b c a d c
     

  

     
, , ,

, , , , , ,a b c a b c a b c
      

 

     
, , ,

, , , , , ,a b c a b c a b c
      

 

   n n
D d


 

, ,a b c ,  

             .n p q r p q r

p q r n p q r n

d a b c c b a d a d b d c d c d b d a       
     

   

       n p q r

p q r n

d a b c d a d b d c   
  

  a

          n p q r

p q r n

d a c b a c d a c d b d a c   
  

    



 

 

Let be a Jordan triple higher derivation of a ring . Then for all  and 

 we define   

  for all . 

Lemma 3.3.7: Let  be a Jordan triple higher derivation of a ring . Then for all  

 , and for all , we have  

i. , 

ii. , 

iii. , 

iv. , 

v. , 

vi. . 

Proof: Proof of part (i) is obvious by Lemma 3.3.6, while the proofs of parts (ii)-(vi) can be obtained easily 

by using additivity of . 

Lemma 3.3.8: Let  be a 2-torsion free semi-prime ring. If , then 

, for all  and for all . 

Proof: Replacing  by  in the hypothesis we get . Hence using 

Lemma 3.3.5. we find that . 

 Now  consider;  

 using hypothesis. Since  is semi-prime 

ring, then . Similarly, replacing  by  and  by  and using 

semiprimeness of , we get the required result.   

Now we are well equipped to prove the main result, which is: 
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 n n
D d


   , ,a b c

,  

         , , ,n

n p q r

p q r n

G a b c d a b c d a d b d c     
  

   n

 n n
D d


  

, ,a b c ,   n

   , ,, , , , 0n nG a b c G c b a    

     , , ,, , , , , ,n n nG a c b e G a b e G c b e       

     , , ,, , , , , ,n n nG a b c e G a b c G a b e       

     , , ,, , , , , ,n n nG a b c e G a b e G a c e       

     , , ,, , , , , ,n n nG a b c G a b c G a b c        

     , , ,, , , , , ,n n nG a b c G a b c G a b c        

nd

     , ,
, , , , 0nG a b c x a b c   

  

   , ,
, , , , 0nG a b c x u v w   

   , , , , , , , , , ,a b c u v w x      n

a a u    , ,
, , , , 0nG a u b c x a u b c   

   

   , ,
, , , ,nG a b c x u b c   

     , ,
, , , , 0nG u b c x a b c   

  

       , ,, ,
, , , , , , , ,n nG a b c x u b c x G a b c x u b c      

     

       , ,, ,
, , , , , , , , 0n nG a b c x u b c x G u b c x a b c      

        

    , ,
, , , , 0nG a b c x u b c   

   b b v c c w





 

 

Theorem 3.3.9:  3  Let  be a prime ring of characteristic different from two, then every Jordan triple 

higher derivation on  is a triple higher derivation on . 

Proof: we are given that the family  of additive mappings on  satisfies  

for all  and , and for all .    Now we 

compute  where  

           p i v p i v

p i v n p i v n

d a d b c x c b d a d c d b a x a b d c           
     

      

 

 

 

 

 

. 

On the other hand, 

 and using Lemma 3.3.6 we get 

 . 

On comparing the above two equalities we get, 

  

  

 

. 

In , put  and cancel the like terms from both sides of this equality and then arrange them, to 

obtain  
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 n n
D d


 

       n p q r

p q r n

d a b a d a d b d a   
  

  ,a b ,   n

    nd a b c x c b a c b a x ac b c             

         d a d b d c x c d b d ap q u vjp q j u v n
      

    

         d c d b d a x a d b d cp q u vjp q j u v n
      

    

             r s t u vd a d b d c d x d c d b d ap q
p q r s t u v n

      
      

             r s t u vd c d b d a d x d a d b d cp q
p q r s t u v n

      
      

        nd a b c x c b a c b a x a b c             

           i s j i s j

i s j n i s j n

d a b c d x d c b a d c b a d x d a b c           
     

   

           i s j i s j

i s j n i s j n

d a b c d x d c b a d c b a d x d a b c           
     

 

             r s t u vd a d b d c d x d c d b d ap q
p q r s t u v n

      
      

 3.3.1

             r s t u vd c d b d a d x d a d b d cp q
p q r s t u v n

      
      

 3.3.1 1n 



 

 

    

In view of Lemma 1.4.5 and the above equation, we obtain  

  

Also using Lemma 3.3.8 we find that  

 , for all . 

Therefore using primeness of , we get either or , for all 

. If we suppose that , for all , then we 

have . Hence by Lemma 3.3.6 we find that,  

 . 

Since  is 2-torsion free, we get or we may say that for 

is a triple higher derivation. On the other hand if , then 

, which again implies that is triple higher derivation. 

Now let the result holds for , i.e., for all  and . 

Also  can be rewritten as  
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       1 1

, ,, ,
, , , , , , , , 0G a b c x a b c a b c x G a b c      

      3.3.2

       1 1

, ,, ,
, , , , , , , , 0G a b c x a b c a b c x G a b c      

    

   1

, ,
, , , , 0G a b c x u v w   

   , , , , , , , , ,a b c u v w     

  1

, , , 0G a b c    
,

, , 0u v w
 

 

, , , , , , , , ,a b c u v w       
,

, , 0u v w
 

  , , , ,u v w   

u v w w v u   

             1

1 1

p q r p q r

p q r p q r

d a b c a b c d a d b d c d c d b d a       
     

   

        1 p q r

p q r n

d a b c d a d b d c   
  

 

 1, n n
n D d


   1

, , , 0G a b c  

       1

1

p q r

p q r

d a b c d a d b d c   
  

   n n
D d




1n   1

, 0G a b c     , ,a b c ,  

 3.3.1

         1

1

i j i j

i j n i j n

d a b c x d c b a d a b c d x d c b a           
    

 

           1

1 0

... i n j i n j

i j i j

d a b c d x d c b a d a b c d x d c b a           

   

   

         1

1

i j i j

i j n i j n

d c b a x d a b c d c b a d x d a b c           
    

  

           1

1 0

... i n j i n j

i j i j

d c b a d x d a b c d c b a d x d a b c           

   

   



 

 

 

  

  

  

  

 

  

  

 . 

Also, we have 
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           r t u vd a d b d c x d c d b d ap q
p q r t u v n

      
     

             1
1

r t u vd a d b d c d x d c d b d ap q
p q r t u v n

      
      

             1...
1

r n t u vd a d b d c d x d c d b d ap q
p q r t u v

       
     

             
0

r n t u vd a d b d c d x d c d b d ap q
p q r t u v

      
     

           r t u vd c d b d a x d a d b d cp q
p q r t u v n

      
     

             1
1

r t u vd c d b d a d x d a d b d cp q
p q r t u v n

      
      

             1...
1

r n t u vd c d b d a d x d a d b d cp q
p q r t u v

       
     

             
0

r n t u vd c d b d a d x d a d b d cp q
p q r t u v

      
     

         1

1

i j i j

i j n i j n

d a b c x d c b a d a b c d x d c b a           
    

 

       1 1 1 1... n nd a b c d x c b a a b cd x d c b a             

     n i j

i j n

a b c d x c b a d c b a x d a b c           
 

  

         1 1 1

1

...i j n

i j n

d c b a d x d a b c d c b a d x a b c           

  

  

     1 1n nc b a d x d a b c c b a d x a b c            

           r t u vd a d b d c x d c d b d ap q
p q r t u v n

      
     

             1
1

r t u vd a d b d c d x d c d b d ap q
p q r t u v n

      
      



 

 

 

  

  

 

 

  

  

 

  

 . 

Now since for all and for all , the 

above expression reduces to  

  

  

 . 

It can also be written as  
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       1 1 1 1... n nd a b c d x c b a a d b c d x c b a              

       1 1 1 1n na b d c d x c b a a b c d x d c b a             

       1 1 1 1n na b c d x c d b a a b c d x c b d a             

             n r t u va b c d x c b a d c d b d a x d a d b d cp q
p q r t u v n

             
     

             1
1

r t u vd c d b d a d x d a d b d cp q
p q r t u v n

      
      

       1 1 1 1... n nd c b a d x a b c c d b a d x a b c              

       1 1 1 1n nc b d a d x a b c c b a d x d a b c             

       1 1 1 1n nc b a d x a d b c c b a d x a b d c             

 nc b a d x a b c     

       1

1

n p q r

p q r n

d a b c d a d b d c   

   

  , , , ,a b c    n

       i j i j

i j n i j n

d a b c x d c b a d c b a x d a b c           
   

 

           r t u vd a d b d c x d c d b d ap q
p q r t u v n

      
     

           r t u vd c d b d a x d a d b d cp q
p q r t u v n

      
     

       
0 , 1

i j n

n n i j

i j n

d a b c x c b a a b c x d c b a d a b c x d c b a                 
 

  

  

       
0 , 1

i j n

n n i j

i j n

d c b a x a b c c b a x d a b c d c b a x d a b c                 
 

  

   

     
0,

t u v

p q r t u v n

a b c x d c d b d a     
     

 



 

 

 

 

 

 

. 

On using for all and for all , we get, 

 for all and for all 

. 

 Now upon using the same methods as used after , we find that, either  or 

, for all and for all . If , then by definition of 

, becomes a triple higher derivation. Whereas if , in view of Lemma 

3.3.5 and using torsion restriction on again becomes a triple higher derivation. Hence the 

required result is proved.  

Let be a Jordan higher derivation of a ring . Then for all and we 

define  

  for all . 

 It can be easily seen that every higher derivation on a ring is a triple higher derivation on . 

But the converse is not true in general. The theorem given below provides the necessary condition such 

converse holds for a prime ring .  

Theorem 3.3.10:  Any triple higher derivation of a prime ring of characteristic different from two 

is a higher derivation on . 
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0, 0

p q r

p q r t u v

d a d b d c x c b a     
     

 

           
0 , 1

p q r t u r

p q r t u v n

d a d b d c x d c d b d a     
      

 

     
0,

t u v

p q r t u v n

c b a x d a d b d c     
     

 

     
, 0

p q r

p q r n t u v

d c d b d a x a b c     
     

 

           
0 , 1

p q r t u r

p q r t u v n

d c d b d a x d a d b d c     
      

 

       1

1

n p q r

p q r n

d a b c d a d b d c   

   

  , , , ,a b c    n

       , ,, ,
, , , , , , , , 0n nG a b c x a b c a b c x G a b c      

     , , , ,a b c   

n

 3.3.2  , , , 0nG a b c  

 
,

, , 0a b c
 

 , , , ,a b c    n  , , , 0nG a b c  

 , , ,nG a b c   n n
D d


  

,
, , 0a b c

 


  n n
D d




 n n
D d


   ,a b 

       , ,n

n p q

p q n

F a b d a b d a d b   
 

   n

  

 

 3  





 

 

Proof: Given that is a triple higher derivation on , i.e., 

 for each and for all . 

Now consider  

  

    

   

. 

Again, 

  

Comparing the above two expressions so obtained for , we obtain  

  

Hence, for  the above equation becomes, 

  

  

 . 

This yields that, .  

On using Lemma 1.4.5 we have for all  and , which further on 

linearizing becomes for all  and . Again since  is prime, we 

get for all and , or we can say that  for all 

 and . Let the result hold for , i.e., 

  for all  and .   

can be rewritten as  
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 n n
D d


 

       n p q r

p q r n

d a b c d a d b d c   
  

  , , , ,a b c    n

        n p i t

p i t n

d a b x a b d a d b x a d b       
  

   

         p q r s t

p q r s t n

d a d b d x d a d b   
    

 

          n i r j

i r j n

d a b x a b d a b d x d a b       
  

   



               i r j p q r s t

i r j n p q r s t n

d a b d x d a b d a d b d x d a d b       
       

   3.3.3

1n 

     1 1 1d a b x a b a b d x a b a b x d a b            

     1 1 1d a b x a b a d b x a b a b d x a b             

   1 1a b x d a b a b x a d b        

   1 1

, ,, , 0F a b x a b a b x F a b         

 1

, , 0F a b x a b      , ,a b x ,  

 1

, ,F a b x c d     , , , ,a b x c d ,   

 1

, , 0F a b   , ,a b x ,        1

1

i j

i j

d a b d a d b 
 

 

,a b ,   1n

     1

1

n i j

i j n

d a b d a d b 

  

  ,a b ,    3.3.4

 3.3.3



 

 

 

  

  

  

  

 . 

On using we get,  

 . 

Also  

  

  

 , 

And again using we have, 

  

          

or, . On using Lemma 1.4.5 we have for 

all  and , which further becomes for all  and 

.  
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         1

1

i j i j

i j n i j n

d a b x d a b d a b d x d a b       
    

 

           1

1 0

... i n j i n j

i j i j

d a b d x d a b d a b d x d a b       

   

   

       s td a d b x d a d bp q
p q s t n

    
   

         1
1

s td a d b d x d a d bp q
p q s t n

    
    

         1
1

n s td a d b d x d a d bp q
p q s t

    
   

         
0

n s td a d b d x d a d bp q
p q s t

    
   

 3.3.4

           i j s t

i j n

d a b x d a b d a d b x d a d bp q
p q s t n

       
 

 
   



         
0 , 1

n n i j

i j n

d a b x a b a b x d a b d a b x d a b           
  

  

       s t p q

s t n p q n

a b x d a d b d a d b x a b       
   

  

       
0 , 1

s td a d b x d a d bp q
p q s t n

    
    

 3.3.4

         n n s t

s t n

d a b x a b a b x d a b a b x d a d b           
 

  

    ,p q

p q n

d a d b x a b   
 

 

   , ,, , 0n nF a b x a b a b x F a b           , , 0nF a b x a b     

, ,a b x ,    , , 0nF a b x c d      , , , ,a b x c d

,  



 

 

Again since  is prime, we get for all and , or we can say that 

 for all  and , and for each . Therefore 

becomes a higher derivation on .  

 In view of Theorems 3.3.9 and 3.3.10 one can easily conclude the following: 

Corollary 3.3.11: Any Jordan triple higher derivation of a prime ring of characteristic different from 

two is a higher derivation on .  
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  , , 0nF a b   ,a b ,  

     n i j

i j n

d a b d a d b 
 

  ,a b  n  n n
D d






 





 

 

Chapter Four 

Derivations On Semi-Prime Rings 

4.1  Generalized  Derivations On Semi-Prime Rings With Involution 

The purpose of this section is the notions of generalized derivation and generalized reverse 

derivation on rings and to prove some remarkable results involving these mappings. 

        Let  be a ring with involution . An additive mapping  is called an derivation if 

 for all ,  and  is called a reverse derivation if 

 for all , . An additive mapping  is called a left 

(right) centralizer  if (resp. ) for all , . An 

additive mapping is called a generalized derivation if  for 

all  and ,  an derivation on . An additive mapping  is called a 

generalized reverse derivation if  for all  and ,  a 

reverse derivation on . 

Theorem 4.1.1:  Suppose that  is a semi-prime ring with involution and  is an 

derivation. If is a generalized derivation on , then maps into . 

Proof : By definition of , we have  

        

For all . Putting  in , we have 

      

       
   

Also, we can write 

   

Hence, from and , we obtain    

For  and , becomes     
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I  I 



  I :D  I 

       D a b D a I b a D b    ,a b  D I 

       D a b D b I a b D a    ,a b  :T 

I       T a b T a I b       T a b I a T b  ,a b 

:F  I         F a b F a I b a D b   

,a b  D I   :F 

I         F a b F b I a b D a    ,a b  D

I  

 12   I :D  I 

F I   F   Z 

F

       F a b F a I b a D b     4.1.1

, ,a b   b b c  4.1.1

         F a b c F a I c I b a D b c      

           F a I c I b a D b I c a b D c         4.1.2

                F a b c F a b c F a I b I c a D b I c a b D c              4.1.3

 4.1.2  4.1.3      , 0F a I c I b


     4.1.4

 I b b  I c c  4.1.4    , 0F a c b


   4.1.5



 

 

Putting  in , we have  

  

Left multiplication of  by , we get    

Putting  in , we have     

Subtracting  from and let  for all , we obtain 

       

For all . Hence, by semiprimeness of  , we have for all  

and . Therefore  maps  into . Hence the theorem is complete.  

Theorem 4.1.2:  Suppose that  is a semi-prime ring with involution . If the additive mapping 

is defined by  for all  and  then maps  into . 

Proof: By the hypothesis, we get      

Putting  in , we have    

Also, we can write 

  
 

Hence from ,  and let  for all , we obtain 

        

The equation is similar to the equation with the exception that the left centralizer  

instead of generalized derivation . Thus the same approach, we have used after the equation in 

Theorem 4.1.1, we obtain the required result  for all  and . Hence the theorem 

is proved.  

Corollary 4.1.3: Suppose that  is a prime ring with involution  and an derivation on . If 

 is a generalized derivation on , then either  or  is commutative. 
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 c c F a  4.1.5

             , , 0 , 0F a c F a b F a c d F a F a c F a b
 

                4.1.6

 4.1.6 b     , 0b F a c F a b


       4.1.7

c b c  4.1.6     , 0F a b c F a b


       4.1.8

 4.1.7  4.1.8 a b c a b c    , , , ,a b c   

   , , 0F a b c F a b
 
          4.1.9

, , , , ,a b c        , 0F a b

   ,a b

  F   Z 

 12   I

:T       T a b T a I b  ,a b  T   Z 

     T a b T a I b   4.1.10

b c b  4.1.10        T a c b T a I b I c     4.1.11

              T a c b T a c b T a c I b T a I c I b           4.1.12

 4.1.11  4.1.12 a b c a b c    , , , ,a b c   

     , 0T a I c I b


     4.1.13

 4.1.13  4.1.4 I  T

I  F  4.1.4

  , 0T a b

   ,a b 

  I D I  

F I   0F  



 

 

Proof: According to Theorem 4.1.1, we have  for all  and . Putting 

, we obtain  for all  and , which 

implies . Hence by the primeness of , we have  or , that is, 

 or  is commutative.  

Corollary 4.1.4: Suppose that  is a semi-simple ring with involution  and an derivation on 

. If  is a generalized derivation on , then  maps  into . 

Proof: Since every semi-simple ring with involution is semi-prime ring with the involution, so 

according to the theorem 4.1.1, the corollary is nothing to prove.  

Corollary 4.1.5: Suppose that  is a ring with involution . If  is a nonzero derivation on , 

then maps  into . 

Proof: The corollary is nothing to prove if we consider in the proof of theorem 4.1.1.  

Theorem 4.1.6:  Suppose that  is a semi-prime ring with involution  and  a reverse 

derivation on . If  is a general reverse derivation on , then  for all  and 

. 

Proof: By the definition of generalized derivation  on , we have  

        

For all  and . Replacing  by  in , we have  

     

Also, we can write  

  

Comparing ,  and let  for all , we have 

 . putting  in , we have  

      

Using , we obtain       

Putting  in  , we have     

 

 

76 

   , 0F a b c


  , ,a b c ,  

b b e        , , 0F a b e c F a b c e
 

     , , ,a b c e , ,   

   , 0F a b e c


      0F a   , 0e c



0F  

  I D I 

 F I   F   Z 

 

  I D I  

D   Z 

F D

 12    I D I 

 F I    , 0D a c


    ,a c



I  F 

       F a b F b I a b D a     4.1.14

,a b  a a c  4.1.14

             F a c b F b I c I a b D c I a b c D a           4.1.15

                F a c b F a c b F b I c I a b D c I a c b D a              4.1.16

 4.1.15  4.1.16 a b c a b c    , , , ,a b c       , 0b c D a

 

 4.1.17  b D a b  4.1.17

         , , 0D a b c D a D a c b D a
 

         4.1.18

 4.1.17    , 0D a c b D a

      4.1.19

b b c  4.1.19    , 0D a c b c D a

       4.1.20



 

 

Right multiplication of by , we have 

         

Subtracting from  and let  for all , we obtain  

.  

Hence by semiprimeness of , we have   for all and , and the theorem is 

complete.  

Corollary 4.1.7:  Suppose that  is a non-commutative prime ring with involution and  a 

reverse derivation on . If is a generalized reverse derivation on , then is a reverse left 

centralizer on . 

Proof: If we replace  by , the relation 
 
gives  and 

using , the relation implies for all  and . Hence by 

primeness of , either  or . If we consider, 

 and . Then clearly and are additive 

subgroups of and . Therefore by Brauer's trick, either or . If , then 

 for all  and . That is,  is commutative which gives a contradiction. On the other 

hand, if , then  for all . Therefore by definition of  gives  

for all  and . Hence the proof is complete.  

Corollary 4.1.8: Suppose that  is a semi-prime ring with involution . If is a reverse 

derivation on , then  maps  into .  

Proof: If we consider , Theorem 4.1.6 gives the result.  

4.2   Semi-Prime Rings With Orthogonal Reverse Derivations 

This section presents the definition of orthogonal reverse derivations; some characterizations of semi-

prime rings are obtained by using orthogonal reverse derivations. We also investigate conditions for two 

reverse derivations to be orthogonal. 

Definition 4.2.1: 8   Let  and  be two reverse derivations on . If  

  for all .    

Then  and  are said to be orthogonal. 
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 4.1.19 c

   , 0D a c b D a c

       4.1.21

 4.1.20  4.1.21 a b c a b c    , , , ,a b c   

   , , 0D a c b D a c
 
        

  , 0D a c


    ,a c 

 12    I D

I   F I   F I 



b a b  4.1.17        , , 0a b c D a a c b D a
 

    

 4.1.17    , 0a c b D a

   , ,a b c , ,   

  , 0a c

   0D a 

  : , 0 for all ,U a a c c


       : 0V a D a   U V

 U V  U  V  U 

 , 0a c

 ,a c  

V    0D a  a F      F a b F b I a 

,a b 

  I D I 

 D   Z 

F D





d g 

       0d x g y g y d x    ,x y  4.2.1

d g



 

 

Remark 4.2.2:  8  A non-zero reverse derivation can not be orthogonal on itself. 

Example 4.2.3: Let  be a ring and let  be a ring. Consider  and . 

The addition and multiplication on  and  are defined as follows: 

  for every  

and . 

Under these operations  is a ring. Let  be a reverse derivation on . Define a derivation on  

by . Then  is a reverse derivation on . Let  be a reverse derivation on . 

Define a derivation  on  by . Then  is a reverse derivation on . It is clear that 

 and  are orthogonal reverse derivation on . 

Lemma 4.2.4:  8  Let  be a semi-prime ring and suppose that additive mappings  and  of  into 

itself satisfy , for all . Then , for all . 

Proof: Suppose that , for all . Replace  by  in the above 

relation, we get 

  

  

 . Thus . 

Now  

  

       

For all  and . 

Thus  , for all .  

Lemma 4.2.5:  8  Let  be a 2-torsion free semi-prime ring. Let  and be reverse derivations of 

. Then  
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1 1  2 2  1 2   1 2   

 

     , , , ,a b c d a c b d         , , , ,a b c d a c b d   
1 2, , ,a b c d  1 

2 

  1d 1 d 

     1, ,0d a b d a d  2d 2

g       2, 0,g a b d b g 

d g 

  d g 

    0d x g x  x     0d x g y  ,x y

    0d x m g x   , , ,x m    x x y

             0 d x y m g x y d x d y m g x g y        

               d x m g x d x m g y d y m g x d y m g y          

       d x m g y d y m g x            d x m g y d y m g x    

                   d x m g y n d x m g y d x m g y n d y m g x            

         0d x m g y n d y m g x       

, , ,x y m n , ,   

    0d x g y  ,x y

  d g 



 

 

 , for all .     

if and only if  and  are orthogonal. 

Proof: Suppose that , for all  and . Consider the substituting 

 in . Then we obtain  

  

 , 

 . 

Using , we have . Then due to Lemma  4.2.2 , we get 

, which gives the orthogonality of  and . 

 Conversely, if  and  are orthogonal, we get for all 

. Then by using Lemma 1.4.5, we obtain , for all 

. Thus , for all  which completes the proof.  

Remark 4.2.6: Suppose that  and  are reverse derivations of a ring . The following identities are 

immediate from the definition of reverse derivation. 

  

   for all .  
 

 

Similarly, 

  

  for all .     
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        0d x g y g x d y    ,x y  4.2.2

d g

        0d x g y g x d y   ,x y 

y x y  4.2.2

       0 ,d x g x y g x d x y    

             0 d x g y x y g x g x d y x y d x        

                0 d x g y g x d y x d x y g x g x y d x         

 4.2.2         0d x y g x g x y d x    

    0d x y g x   d g

d g         0d x m g y g x m d y    

, ,m            0d x g y g x d y  

, ,x y           0d x g y g x d y   , ,x y  

d g  

                 dg x y d g x y d g y x y g x dg x y d x g y         

      g x d y x dg y   , ,x y    4.2.3

                 gd x y g d x y g d y x y d x gd x y g x d y         

      d x g y x gd y   , ,x y    4.2.4



 

Theorem 4.2.7:  Let  be a 2-torsion free semi-prime ring. Let  and  be reverse derivations on 

. Then the following conditions are equivalent: 

i.  and  are orthogonal. 

ii. . 

iii. . 

iv. . 

v.  is a derivation. 

vi.  is a derivation. 

Proof: . Suppose . Then by using the identity , we obtain  

 , for all . 

Therefore by Lemma ,  and  are orthogonal. 

. Consider , for all  and . Then  

  

      

Owing to , the second and third summands are zero. Therefore we obtain  for all 

 and . Now take  and we obtain  

 , for all  and . 

Since is semi-prime, we get , for all , that is . 

The proof of the parts  and  are similar. 

. If  and  are any reverse derivations, then by  and ,  and .  

 Now using the equation , we obtain, 
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 8   d g



d g

0dg 

0gd 

0dg gd 

dg

gd

   ii i 0dg   4.2.3

        0d x g y g x d y   , ,x y  

 4.2.5 d g

   i ii     0d x y g z   , ,x y z ,  

             20 d d x y g z d y g z d x y g z d x       

               dg z y d x g z d y d x y g z d d x       

 i      0dg z y d x  

, ,x y z ,    x g z

      0dg z y dg z   z ,  

    0dg z  z 0dg 

   iii i    i iii

   iv i d g  ii  iii 0dg  0gd 

 4.2.3

        dg gd x y dg x y gd x y    

             dg x y d x g y g x d y x dg y      

             gd x y g x d x d x g y x gd y      



 

 

  

      for all . 

Thus, if , then the above relation reduces to , for all 

. Since  is 2-torsion free, we get  

 , for all . By Lemma 4.2.5, we get that  and  are 

orthogonal. 

. From the parts  and , we get . 

. Since  is a derivation, we have . Comparing this 

expression with , we obtain . 

The proof of  is the similar to that of . 

. Obvious.  This completes the proof.  

Corollary 4.2.8: Let  be a prime 2-torsion free ring. Suppose that  and  are orthogonal reverse 

derivations of . Then either  or .  

The proof is immediate from Theorem 4.2.7. 

Theorem 4.2.9:  8  Let  be a 2-torsion free semi-prime ring satisfying the condition 

 for all  and . Let  and  be reverse derivations on . Then the 

following conditions are equivalent: 

i.  and  are orthogonal. 

ii. , for all . 

iii. , for all . 

iv. , for all . 

Proof: . The linearization of  gives  

 , for all      

take  as  in , we obtained  for all .  
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          2 2dg gd x y d x g y g x d y     

      x dg y gd y  , ,x y  

0dg gd          2 0d x g y g x d y  

, ,x y   

        0d x g y g y d y   , ,x y   d g

   i iv  ii  iii 0dg gd 

   v i dg         dg x y dg x y x dg y   

 4.2.3         0d x g y g x d y  

   vi i    v i

   iii vi

  d g

 0d  0g 

 

x y z x y z    , ,x y z ,   d g 

d g

    0d x g x  x

    0g x d x  x

        0d x g x g x d x    x

   ii i     0d x y g x y  

        0d x g y d y g x   , ,x y    4.2.5

y z y  4.2.5         0d x g y z d y z g x     , , , ,x y z   



 

 

  

for all .  

Since,  and  and so  becomes 

 for all . 

Now, since  for all  and  ,we get    

           

Replacing  by  in  we obtained      for all ,

. 

Letting  in , we get 

   

   

  for all . 

Then by Lemma 4.2.4, we obtain  

 for all     

Replacing  by  in  we get, 

   

        

For all . 

By  the relation  reduced to . Since is 2-torsion free, 

we have  

  for all     
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                0d x g z y d x z g y d z g x z d y g x           4.2.6

, , , ,x y z   

       d x g z d z g x          d y g x d x g y    4.2.6

                0d z g x y d x z g y d z y g x z d x g y            , , , ,x y z   

x y z x y z    , ,x y z ,  

       , , 0d z y g x d x z g y           4.2.7

z  d x  4.2.7    2 , 0d x y g x      4.2.8 ,x y

,  

y y w  4.2.8

   20 ,d x y w g x     

       2 2, ,d x y w g x d x y w g x            

   2 ,d x y w g x      , , , , ,x y w    

   2 , 0d x y w g y      , , , , ,x y w      4.2.9

x x u  4.2.9

   20 ,d x u y w g y      

          2 22 ,d x u d x d u x d u y w g y            4.2.10

, , , , ,x u     

 4.2.9  4.2.10      2 , 0d x d u y w g y       

     , 0d x d u y w g y       , , , , ,x y       4.2.11



 

Taking  for  in , we get  

   

     

and . ( by using  ) 

In particular, . 

 The replacement , gives  

.  

Since   is semi-prime, we get . Using  and  we obtain by 

replacing  for , , for all . 

Hence, , for all . Thus  can be written in the form 

, for all . Now use Lemma 4.2.5 to get the required relation.  

. If  and  are orthogonal then we have , for all . Then we get 

, for all , . 

. Take  in . Then we see that  

. Thus we obtain  

  for all , .   

Equation  implies that  is a Jordan derivation. We know that if  is semi-prime ring, then 

every Jordan derivation is a derivation. 

. This follows from Lemma 4.2.5.   

Corollary 4.2.10:
 

 Let  be a 2-torsion free semi-prime ring and let  be a reverse derivation on

. If  is also a derivation, then . 

The proof follows from part  of Theorem 4.2.9. 
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x z x  4.2.11

     0 ,d x z d u y w g y       

           , ,d z x d u y w g y z d x d u z w g y                

     , 0d z x d u y w g y         4.2.11

     , 0d z x d x y w g y       

     ,d z d x y w g y     

       , , 0d x y w g y x d x y w g y             

    , 0d x y w g y       4.2.9  4.2.11

 d x w        , , 0d x g y y d x g y          , , , , ,x y     

       d x g y g y d x  , ,x y    4.2.5

        0g y d x d y g x   , ,x y  

   i iii d g     0d x g x  x

    0d x g x  x 

   iii ii y x  4.2.3          dg x x dg x x d x g x   

      g x d x x dg x 

        dg x x dg x x x dg x    x   4.2.12

 4.2.12 dg  

   iii ii

 8   d


2d 0d 

 ii



 

Theorem 4.2.11:  Let  be a 2-torsion free semi-prime ring. Let  and  be a reverse derivation 

on . Then the following conditions are equivalent: 

i.  and  are orthogonal. 

ii. There exist ideals  and  of such that: 

a)  and  is a non-zero ideal of . 

b)  maps  into  and  maps  into . 

c) The restriction of  to  is a direct sum , where is a reverse 

derivation of  and  is zero. If  then . 

d) The restriction of  to  is a direct sum , where is a reverse 

derivation of  and  is zero. If  then . 

Proof: . Obvious. 

 . Let  be an ideal of  generated by all , and let  be , the 

annihilator of . From equation  we see that , for all . Whenever  is an ideal in 

a semi-prime ring, we have  and is a non-zero ideal. Thus a) and b) are 

proved. 

 Our next goal is to show that  is zero on . Take . Then , for all . 

Hence . It is obvious from the definition of  that  leaves  

invariant and hence . Then the above relation reduces to . Since in a semi-prime 

ring the left, right and two-sided annihilators of an ideal coincide, we then have . 

But on the other hand  belongs to the set of generating elements of . Thus , 

which means that  is zero on . As we have mentioned above  leaves  invariant. Therefore we may 

define a mapping  as a restriction of  to . 

 Suppose that . Then  is zero on . Take  and , we have 

. But since . Consequently 

, for all . Thus . But ideal  is a non-zero and therefore . Hence 

, for all . Then c) is thereby proved. 

 It remains to prove d). First we show that  is zero on . Take  and set 

. Then  

  

 . 
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g
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 Since  and  are orthogonal we have and . Hence 

. In a similar fashion we see that  and . Then  is 

zero on . Recall that  maps  into . In particular, it leaves  invariant. Thus we may define 

 as a restriction of  to . The proof that  implies  is the same as the proof that 

 implies . This completes the proof.  

Corollary 4.2.12: Let  be a 2-torsion free semi-prime ring and let  be a reverse derivation of . If 

 for all , then . 

 If  or if , for every , then we obtain the relation 

between the reverse derivations  and  of a ring. 

Theorem 4.2.13:  Let  be a 2-torsion free semi-prime ring. Let  and  be reverse derivations 

on . Suppose that , then  and  are orthogonal. Thus, there exist ideals  and  of 

 such that  is a non-zero ideal which is direct sum in , on  and  on . 

Proof: From it follows immediately that . Hence  and 

 are orthogonal by the part  of Theorem 4.2.7. Another part of Theorem 4.2.13, follows from 

of Theorem 4.2.11.  

 From Theorem 4.2.13 we get the following  

Corollary 4.2.14: Let  be a prime 2-torsion free ring. Let  and  be derivations of . If , 

then either  or . 

Theorem 4.2.15:  Let  be a 2-torsion free semi-prime ring. Let  and  be reverse derivations of 

. If , for all , then  and are orthogonal. Thus, there 

exist ideals  and  of  such that is an essential direct sum in ,  on  and 

 on . 

Proof: Note that , for all . Now applying 

parts  and  of Theorem 4.2.9, we obtain the required result.  

Corollary 4.2.16: Let  be a prime 2-torsion free ring. Let  and  be reverse derivations of . If 

, for all , then either or . 

The proof is immediate from Theorem 4.2.15.  

4.3   Orthogonal Derivations On Semi-Prime Rings 

The objective of this section is to extend the existing notions of derivations and generalized derivations 

in semi-prime ring. 
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Definition 4.3.1:  1  Let  and be endomorphisms of . Motivated by the concepts of 

derivation and generalized derivation in rings, the notions of derivation and generalized 

derivation in rings are defined as follows: 

An additive mapping  is called a derivation if  

holds for all and . An additive map  of  is a generalized derivation  if there 

exists a derivation  of  such that  holds for all  

and . 

Remarks 4.3.2: 

1. The notion of generalized derivation includes those of derivation when , of 

derivation when , and , the identity map on , and of generalized derivation, 

which is the case when . Note that, a generalized derivation is just a 

generalized derivation. 

2. Every generalized derivation is a generalized derivation with , the identity map 

on , but the converse need not be true in general. The following example shows that the notion of 

a generalized derivation in fact generalizes that of a generalized derivation. 

Example 4.3.3: Let  be any ring, and let  ,  . 

Then  is a ring. Further, the mappings  defined by  

for all  are endomorphisms of . Next, define 

the map  such that  for all . Clearly,  is a derivation 

but not a derivation on . Moreover, consider the map :F   defined as 

0

0 0

0 0

a x a

F b y

c z

    
    

    
    
    

  for 

all . 
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0 0

0

0 0

a x

d b y b

c z

    
    

    
    
    

a x

b y

c z

 
 

 
 
 

d  ,  



a x

b y

c z

 
 

 
 
 



 

 

 Then  is a generalized derivation on  induced by . However, is not a generalized 

derivation on . 

Note:  From now and until the end of this section,  is always a 2-torsion free semi-prime ring while 

 and  are automorphisms of . 

Lemma 4.3.4:  1  Let  be a 2-torsion free semi-prime ring, and  be derivation of . 

Then  and  are orthogonal if and only if  for all  and . 

The proof is immediate from Lemma 4.2.5.  

Theorem 4.3.5:  1  Let  be a 2-torsion free semi-prime ring, such that  for all 

 and . Further, suppose  and  are derivation of  such that 

. Then  and  are orthogonal if and only if  for all  and . 

Proof: Suppose that  for all  and . Linearizing this relation, we get  

  for all  and .    

Replacing  by  in , we get  

         
 

  

In view of , we have  and , and hence the 

above expression reduces to  

 for all  and .   

Replacing  by  in , we obtain 

  for all  and . 

This implies that  

  for all and .   

Replacing by  in and using Lemma 1.4.5 and relation , we obtain  
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  x y z x y z   

, ,x y z ,   d g  ,   

,  d d d d     d g     0d x g x  x 

    0d x g x  x 

        0d x g y d y g x   ,x y   4.3.1

y y z  4.3.1

       0 d x g y z d y z g x    

                       d x g y z d x y g z d y z g x y d z g x           

 4.3.1        d x g y d y g x          d z g x d x g z  

           , ,d y z g x y d x g z
 

          , ,x y z ,    4.3.2

y   1 d x   4.3.2

       1 , 0d d x z g x


      ,x z ,  

    1 2

1, 0d x z g x


     1,x z  ,    4.3.3

1z z s  4.3.3  4.3.3



 

 

for all and . 
 

 

Replacing  by  in  and using it, we get 

 . 

Putting  in above and using the fact that  is 2-torsion free, we find that  

 .    

Substituting  for  in  and using it, we find that  

 . 

The above expression yields that  

 . 

Semiprimeness of  implies that  

 ,  and hence 

 .    

Replacing  by , we get  

 .   

Also, from , we have  

 .   

Subtracting  from , we get  

 . 

Semiprimeness of  yields that . That is,  

for all  and . Thus, can be written as  for all  

and . By Lemma 4.3.4,  and  are orthogonal. 
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      , , ,s x y z , ,     4.3.4

x x u  4.3.4

        12 , 0d x d u z s g y


        , , , , ,  , , ,s u x y z      

  1u u  

     , 0,  , , , , ,  , , ,d x d u z s g y s u x y z


             4.3.5

1x t x  4.3.5
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   , 0,  , , , ,  , ,d x z s g y s x y z
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          4.3.6
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            4.3.7

 4.3.6
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            4.3.8

 4.3.8  4.3.7

       ,   , 0,  , , ,  , ,d x g y d x g y x y z
 
              

    , 0,  , ,  d x g y x y


             d x g y g y d x 

,x y   4.3.1         0d x g y g x d y   ,x y

 d g



 

 

Conversely, suppose that  and  are orthogonal. Then   for all  and

. Therefore,  for all  and by Lemma 1.4.8 .  

Theorem 4.3.6:  1  Let  be a 2-torsion free semi-prime ring. Suppose  and  are 

derivations of such that . Then the following conditions are 

equivalent: 

i.  and  are orthogonal. 

ii. . 

iii. . 

iv. . 

v.  is a derivation of . 

Note: The following example shows that the hypothesis of semiprimeness in Theorem 4.3.6 is essential. 

Example 4.3.7: Let  be any 2-torsion free ring and let 

. Then  is a 2-torsion free ring. It can be easily seen that  is not semi-prime. Take , 

where  is the identity map on . Define the maps  such that  

  for all . 

Then it is straightforward to check that  and  are derivations on . Also,  and  are 

orthogonal, and  is a derivation on . However,  and . 

Remark 4.3.8: Two generalized derivations and of  are called orthogonal If 

 holds for all . 

Lemma 4.3.9:  1  Suppose that two generalized derivations and of are orthogonal. 

Then following relations hold: 

i. , and hence  for all  and 

. 

ii.  and  are orthogonal and  for all  and . 

iii.  and  are orthogonal and  for all  and . 

iv. and  are orthogonal. 

v. If and  then 

 and .   
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Proof: . By the hypothesis, we have  for all  and . Application of 

Lemma 1.4.8 yields that . Therefore, for all 

 and . 

. By , we have and for all  and . Hence  

 . Since  is an 

automorphism of , the last expression yields that  

  for all  and . 

Thus, the semiprimeness of  forces that  

  for all  and .     

Replacing  by  in , we get  

 . 

Using  and fact that  is an automorphism of , we obtain 

  for all . 

Application of Lemma 1.4.8 yields that  and  are orthogonal, and hence 

 for all  and . 

. Using similar approach as we have used in . 

. By the assumption, we have  for all  and . This implies that 

 

 

 .  

Using and , we find that  

  for all  and . 
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 i     0F x z G y   , ,x y z ,  

       0F x G y G y F x           0F x G y G y F x  

,x y  

 ii  i     0F x G y      0F x z G y   , ,x y z , ,   

                     0 F z x G y F z x G y z d x G y z d x G y             



         0d x G y d x G y     ,x y , ,   



    0d x G y  ,x y   4.3.9

x x s  4.3.9

               0 d x s G y d x s G y x d s G y        

 4.3.9  

     0d x G y  ,x y

d G

        0d x G y G y d x   ,x y 

 iii  ii

 iv     0F x G y  ,x y 

                     0 F x z G y w F x z x d z G y w y g w            

                       F x z G y w F x z y g w x d z G y w           

       x d z y g w   

 ii  iii

        0x d z y g w     , , ,w x y z , ,   



 

 

Since  is an automorphism of , so the last expression yields that  

  for all  and . 

The semiprimeness of  forces that  

  for all  and . 

Hence by Lemma 1.4.8,  and  are orthogonal. 

. In view of  and  are orthogonal. Hence,  

 . 

Since  and  are orthogonal, so we obtain  

  for all  and .    

Replacing  by  in  and using the semiprimeness of , we get . Similarly, since 

each of the equalities , , , 

, and hold for all  and , we concloud 

that , respectively.  

 In view of Theorem 4.3.6  and Lemma 4.3.9, we have the following corollary: 

Corollary 4.3.10:  1  Let  and  be orthogonal generalized derivations of  such that 

 and  then is a 

derivations of and is a generalized derivations of . 

Theorem 4.3.11:  1  Suppose  and are generalized derivations of  such that 

 and . Then  and 

 are orthogonal if and only if one of the following holds:  

i. (a) . 

(b) . 

ii. . 

iii. and  . 

iv. is a generalized derivation and . 

91 

 

 

         0d z g w d z g w         ,w z , , ,    



     0d z g w   ,w z ,  

d g

 v  ii d g     0 G d x z G y 

                      Gd x z G y d x g z G y d x z g G y         

,  d d G G     ,d g

   1 1 0Gd x z G y  
1 1, ,x y z  ,    4.3.10

1y  d x  4.3.10  0Gd 

     0d G x z d y        0F g x z F y        0g F x z g y  

     0F G x z F y        0G F x z G y   , ,x y z ,  

0dG Fg gF FG GF    

 ii

 ,F d  ,G g  ,   

,  ,  = , =F F F F G G G G         ,  ,  ,  ,d d d d g g g g           dg  2 2,  

    , 0,0FG dg   2 2,   

 ,F d  ,G g  ,   

,  ,  = , =F F F F G G G G         ,  ,  ,  d d d d g g g g            ,F d

 ,G g

        0,  , ,F x G y G x F x x y      

        0,  , ,d x G y g x F y x y      

        0,  , ,F x G y d x G y x y      

    0,  , ,F x G y x y     0dG dg 

 ,FG dg  2 2,       0, , ,F x G y x y    



 

 

Proof: In view of Lemma 4.3.9, Corollary 4.3.10 and the orthogonality of and  

 and . Now, we establish 

" and are orthogonal." By the hypothesis, we have  

  for all  and .      

Replacing  by  in , we find that 

           

 

Using  in last expression, we get 

 for all  and .  

Since  is an automorphism of , the relation  can be rewritten as  

 for all  and . 

By Lemma 1.4.8, we conclude that  and  for all  and 

. Using Lemma 1.4.5, we have  for all  and . Therefore,  

and  are orthogonal. 

" and are orthogonal." Given that . Putting  for , we get  

   

      

      

Using Lemma 1.4.8 and the fact that  is an automorphism of , we conclude that and are 

orthogonal. 

" and are orthogonal." By the assumption, we have  
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 ,F d  ,G g 

     , ,i ii iii  iv

 i   ,F d  ,G g

        0F x G y G x F y   ,x y    4.3.11

x x z  4.3.11

       0 F x z G y G x z F y    

                       F x z G y x d z G y G x z F y x g z F y            

 b

            0F x z G y G x z F y     , ,x y z ,    4.3.12

   4.3.12

       1 1 0F x z G x G x z F x    
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   0 F x z G y 

           F x z G y x d z G y     

     F x z G y 

   ,F d  ,G g

 iii   ,F d  ,G g

 0 dG x y



 

 

   

      

    . 

Since  and  are automorphisms of , we have  

  for all .  

Application of Theorem 4.3.6(iv) and Lemma 1.4.8 yields that  

  for all . 

Replacing  by  and using Theorem 4.3.6(iv) and Lemma 1.4.8, we obtain 

  for all  and . 

By Lemma 1.4.8, we have  for all  and , which satisfies (ii). Therefore, (iii) 

implies that  and  are orthogonal. 

" and are orthogonal." Since  is a generalized derivation and  is 

a derivation, we have  

  for all  and .   

Also  

 

Comparing  and , we get 

 for all  and . 

Since are automorphisms of and noting that , we have  

 for all  and .    

Since, , we get  
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By Lemma 1.4.8, we have for all  and . Replace by  to get  

  

     

     

Since  is an automorphism of  and using Lemma 1.4.8, we find that for all  

and . Now from , we get  for all  and . Putting for 

 in the last relation, we get  

  

     

    . 

Since is an automorphism of , the above expression forces that  for all 

 and . Again using Lemma 1.4.8, we obtain  for all  and 

. By ,  and  are orthogonal.  

Theorem 4.3.12:  1  Let  and be generalized derivations of  such that  

. Then the following conditions are equivalent: 

i. is a generalized
 

derivation. 

ii. is a generalized derivation. 

iii.  and  are orthogonal, also  and  are orthogonal. 

Proof: . Suppose  is a generalized
 

derivation. We have 

 for all  and . Replacing  by ,  we obtain  
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        0G x d y F x g y   ,x y   y y z
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    .  

Since  is an automorphism of , the above relation yields that  

  for all  and .   

Since  is a derivation, so  and  are orthogonal by Theorem 4.3.6. replacing  by 

 and using the orthogonality of  and . We get  

  

    . 

Again replacing  by  and  by  and using the semiprimeness of , we obtain  

  for all  and .      

Substituting  for  in , we find that  

  for all  and . 

Using  and the fact that  is an automorphism of , we get  

  for all  and . 

Therefore by Lemma 1.4.8,  and  are orthogonal. Hence  becomes  for all 

 and . Thus,  and  are orthogonal. 

 . By the orthogonality of   and , we have  

  for all  and .    

Replacing  by , we get  
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           G x y d z F x y g z    

 

       1 1 0G x y d z F x y g z    
1, ,x y z ,    4.3.16

dg  2 2,   d g
1y

 g z y d g

           0 G x g z y d z F x g z y g z      
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y  y F x   

    0F x g z  ,x z    4.3.17

y z z  4.3.17

            0F x g y z F x y g z     , ,x y z ,  

 4.3.17  

   1 0F x y g z  
1, ,x y z ,  

F g  4.3.16    1 0G x y d z  

1, ,x y z ,   G d

   iii i F g

    0F x y g z   , ,x y z ,    4.3.18

x s x

   0 F s x y g z  



 

  

    . 

Since is an automorphism of  and using the semiprimeness of , we get  for all 

 and . By Lemma 1.4.8,  and  are orthogonal. Thus, by Theorem 4.3.6,  is a 

derivation. Now, replacing  by  and  by  in , we get  

  for all  and .  

By the semiprimeness of , we have  for all  and . Similarly, by the 

orthogonality of  and d, we have  for all  and . Thus,  

  for all  and . 

Hence is a generalized
 

derivation. 

. Using similar approach as we have used to prove .  

Corollary 4.3.13: Let  and be generalized derivations of . Then the following conditions 

are equivalent: 

i. is a generalized derivation. 

ii. is a generalized derivation. 

iii.  and  are orthogonal, also  and  are orthogonal. 

Note: The following example shows that Theorem 4.3.12 does not hold for arbitrary rings. 

Example 4.3.14: Let  be any 2-torsion free ring and let  

. Then  is a 2-torsion free ring which is 

not semi-prime. Define the map  such that . Clearly,  is an automorphism of 

 and take , where is the identity map of . Next, define the maps  such that, 
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  for all . It can be easily verified that  and  are 

derivations of  such that . Now, consider the maps  

such that  for all . 

It can be easily checked that and are generalized derivations of . Also, 

and are generalized derivations of but neither  and  are orthogonal nor  and 

are orthogonal. 

Corollary 4.3.15: Let be generalized derivations of . If for all  

and , then . 

Proof: Notice that  for all  and . Replacing  by , we get  

 . 

Since  is an automorphism of and using Lemma1.4.8, we have  for all  and 

. Now, replacing  by , we get  

 . 

By the semiprimeness of , we get  for all . Therefore, . Again  

 .  

In particular, we have  

 for all  and . 

Using the semiprimeness of , we get  for all  and hence .  

Example 4.3.16: Let  be any 2-torsion free ring and let  
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0

a a a

b b

F c c

f f

h h h

          
          
          
           
          
          
          
          

 

a

b

c

f

h

 
 
 
 
 
 
 
 

 ,F d  ,G g  ,     ,FG dg

 ,GF gd  2 2,    F g G

d

 ,F d  ,        0F x F y  ,x y

  0F d 

    0F x F y  ,x y   y y z

                     0 F x F y z F x F y z F x y d z F x y d z          

      0d z F x  ,x z

  x x z

                     0 d z F x z d z F x z d z x d z d z x d z          

   0d z  z 0d 

                     0 F x z F y F x z F y x d z F y F x z F y           

   1 0F x z F x  
1,x z  ,  

   0F x  x 0F 

R



 

. Then  is a 2-torsion free ring which is not 

 semi-prime. Define the mappings  such that  for all

. Clearly, and are automorphism of . Next, define the map  such that,  for 

all . It can be easily verified that  is a derivation of .Further, consider the map 

such that  for all .  

Then it is straightforward to check that  is a generalized derivation of . Moreover,  

satisfies the relation  for all  and , but neither nor .  

4.4   Permuting Tri-Derivations On Semi-Prime Rings 

In this section, we investigate some results concerning a permuting tri-derivation  on non-

commutative 3-torsion free semi-prime rings . Some characterizations of semi-prime rings are 

obtained by means of permuting tri-derivations. 

Let  be a nonempty subset of . Then a map  is said to be commuting (resp. centralizing) 

on if  for all (resp.  for all ), and is called 

central  if  for all .  

Every central mapping is obviously commuting but not conversely in general, and  is called skew-

centralizing on a subset  of  (resp. skew-commuting on a subset  of ) if 

 holds for all (resp. holds for all ). 

Note: In this section we shall assume  for all . 
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F  ,    F

    0F x F y  ,x y   0F  0d 



D

  

I  :d 

I   , 0d x x

   ,x I      ,d x x Z


    ,x I  

   d x Z  ,x  

d

I  I 

     d x x x d x Z    ,x I I      0d x x x d x   ,x I  

  x y z x y z    , , , ,x y z   



 

 

Theorem 4.4.1: Let  be a 3-torsion free semi-prime ring satisfying the condition  and let  be a 

non-zero ideal of . If there exists a permuting tri-derivation  such that  is an 

automorphism commuting on , where  is the trace of , then  is a non-zero commutative ideal. 

Proof: Suppose that for all .     

Substituting  by  leads to  

  

          for all .    

Putting  instead of  in  we get  

 for all .   

Since  is odd, we set  in and then use and to obtain  

  for all .    

Let us write  instead of  in , we obtain  

  

              

             .  

Then , since is an automorphism, we obtain 

. 

Replacing  by , we get 

.      

Again left-multiplying by  implies that  

 .      
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    I

 :D  d

I d D I

  , 0d x x

   ,x I    4.4.1

x x y

         , , 3 , , , 3 , , , 3 , , ,d x y d y x D x x y x D x y y x D x x y y
    
                     

 3 , , , 0D x y y y


    , ,x y I    4.4.2

x x  4.4.2

   , , , , , , 0D x y y x D x x y y
 
        , ,x y I    4.4.3

d x x y   4.4.3  4.4.1  4.4.2

   , 3 , , , 0d y x D x y y y
 
        , ,x y I    4.4.4

y x x  4.4.4

         , 3 , , , , 3 ,d y y x D y x y y y y d y x d y x y
  

               

      3 , , , , 3 , , ,y D x y y y y d y x D x y y y
  

             

   3 , 0,  , , ,d y x y x y I


      

   , 0d y x y


  , , ,x y I     d  , 0y x y


 

, , ,x y I    

x y x

 , 0y x x y


   , ,  , ,x y I       4.4.5

x

 , 0x y x y


   , ,  , ,x y I       4.4.6



 

 

Subtracting  and  with using  is semi-prime ring, we completes our proof.  

Corollary 4.4.2:
 

 Let  be a 3-torsion free semi-prime ring satisfying the condition  and  be 

an ideal of . If there exists a permuting tri-derivation  such that is commuting on 

, where  is the trace of , then is a central ideal. 

Theorem 4.4.3:
 

 Let  be a 3-torsion free semi-prime ring satisfying the condition . If there 

exists a permuting tri-derivation  such that  is an automorphism commuting on , 

where  is the trace of , then  is commutative. 

Proof: For all x , we have    d x Z  , then   , 0 ,d x x


        4.4.7   

Substituting x  by x y , we obtained  

         , , 3 , , , 3 , , , 3 , , ,d x y d y x D x x y x D x y y x D x x y y
    
                       

 3 , , , 0D x y y y


     for all , ,x y   .      4.4.8  

Putting x  instead of x  in  4.4.8  and comparing  4.4.8  with the result, we arrive at  

    , , , , , , 0D x y y x D x x y y
 
               4.4.9  

Since d  is odd, we set x x y   in  4.4.9  and then use  4.4.7  and  4.4.9  to get 

    , 3 , , , 0d y x D x y y y
 
                          4.4.10  

Let us write y x  instead of x  in  4.4.10 , we obtain  

         , 3 , , , , 3 ,d y y x D y x y y y y d y x d y x y
  

                  

          3 , , , , 3 , , , 3 , 0y D x y y y y d y x D x y y y d y x y
  

                  

Then    , 0d y x y


  . Since d  is an automorphism, we obtain  , 0y x y


  . Replacing x  by y x , we 

get  

  , 0y x x y


             4.4.11 Again left-

multiplying by x  implies that  

  , 0x y x y


            4.4.12  
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 4.4.5  4.4.6  

 7     I

 :D  d

I d D I

 7    

:D  d 

d D 



 

 

Subtracting  4.4.11  and  4.4.12  with using   is a semi-prime  ring, we get the required result.  

  

Theorem 4.4.4:
 

 Let  be a 6-torsion free semi-prime ring satisfying the condition . If there 

exists a permuting tri-derivation  such that  is an automorphism centralizing on , 

where  is the trace of , then  is commutative. 

Proof: Assume that  

 for all  and      4.4.13   

Replacing  by  and again using  4.4.13 , we obtain  

  

             3 , , ,  , , ,                                      4.4.14D x y y y Z x y


          

Replacing  by 
 
in  4.4.14  we get  

       , , , , , ,  , , ,                                 4.4.15D x y y x D x x y y Z x y
 

             

Replacing  by  in  4.4.15 , we obtain  

       , 3 , , ,  , , ,                                      4.4.16d y x D x y y y Z x y
 

              

Taking  in  4.4.16  and invoking  4.4.13 , we get  

       , 3 , , , 8 , ,  , ,d y y y D y y y y y d y y y Z y
  

                      4.4.17  

Now commuting  4.4.17  with yields  

   

Again substituting  by  in  4.4.16  gives  
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 7    

:D  d 

d D 

   ,d x x Z

    x  

x x y

         , , 3 , , , 3 , , , 3 , , ,d x y d y x D x x y x D x y y x D x x y y
    
                     

x x

x x y

x y y

 d y

   8 , ,  0 , , , .d y y d y y y
 
            

x y x



 

 

 

 
 for all  .  

Then  for all 

. And so we get  

 for all .   4.4.18  

Since  acts as an automorphism with  is 6-torsion free the relation  4.4.18  reduces to 

 for all . Replacing  by  we get 

 for all .    4.4.19  

Replacing  by  in  4.4.19
 
and subtracting with  4.4.19 , gives  

 for all .        4.4.20  

Replacing  by  and left-multiplying by , we obtain  

 for all .      4.4.21  

Again in  4.4.20  replacing  by  and  by , we get  

 for all .     4.4.22  

Subtracting  4.4.21  and   4.4.22  with using  is 6-torision free semi-prime, we obtain  for all 

. Thus, we get  is commutative.  

Theorem 4.4.5:
 

 Let  be a 3-torsion free semi-prime ring satisfying the condition . If there 

exists a permuting tri-derivation  such that  is commuting on , where  is the trace 

of , then  is a central mapping. 
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            , 3 , , , , 3 , , , 3 ,d y y x D y x y y y y d y x D x y y y d y x y
   

                    

   4 ,d y y x Z

     , , ,x y   

          , 3 , , , , 3 , 4 , , 0y d y x D x y y y y d y x y d y x x y
   

                      

, , ,x y   

       3 , , 7 , , 0d y x y y d y y x y
 

       
, , ,x y   

d 

 , , 0y x y y
 

   
 

, , ,x y    x r x

   , , 2 , 0y x x y y y x y
 

     
 

, , , ,x y    

y y

 4 , 0y x y


  , , ,x y   

x x r s

 4 , 0y x r y


   , , , , , ,x y r s    

x x m x s x

 4 , 0y s x m y


    , , , , , , ,x y m s     

  , 0s y



,s y 

 7    

:D  d  d

D 



 

 

Proof: we have   for all .     4.4.23  

Substituting  by  leads to  

  

   for all .    4.4.24  

Putting  instead of  in  4.4.24  we get  

  for all .   4.4.25  

Since  is odd, we set  in  4.4.25 and then use  4.4.23 and  4.4.24 to obtain  

  for all .    4.4.26  

Let us substitute  instead of  in  4.4.26 , since  is 3-torsion semi-prime, then  

. 

Applying Lemma 1.4.4, the above relation gives  for all , and this completes the 

proof of the theorem.  

Theorem 4.4.6:
 

 Let  be a 3-torsion free semi-prime ring. If there exists a permuting tri-derivation 

 such that  is commuting on , where  is the trace of , then  is commuting 

(resp. centralizing). 

Proof: we can restrict our attention to relation,  for all . The substitution of 

 
for  in above relation gives  

 

 , , .                                                                                                          4.4.27x y   
  

Now, by the same method in Theorem 4.4.5, we arrive at  

         , 3 , 3 , , , 0 , , , .      4.4.28y d y x d y x y y D x y y y x y
 

                  

Which implies that  

 for all        4.4.29
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  , 0d x x

   ,x  

x x y

         , , 3 , , , 3 , , , 3 , , ,d x y d y x D x x y x D x y y x D x x y y
    
                     

 3 , , , 0D x y y y


    , ,x y  

x x

   , , , , , , 0D x y y x D x x y y
 
        , ,x y  

d x x y 

   , 3 , , , 0d y x D x y y y
 
        , ,x y  

y x x     , 0d y x y


 

, , ,x y    

   d y Z  y

 7  

:D  d  d D D

  , 0d x x

   ,x  

x y x

           , , 3 , , , 3 , , , 3 , , , 3 , , , 0d x y d y x D x x y x D x y y x D x x y y D x y y y
     

                            

   , 0d y x y


  , , , .x y   



 

 

The above relation gives  for all . By substitution the relation  in 

 4.4.29 with using replacing  by  and  is 3-torsion free semi-prime, we obtain  

 for all .       4.4.30  

Then  is commuting(resp. centralizing) of .  

Theorem 4.4.7:
 

 Let  be a non-commutative 3-torsion free semi-prime ring satisfying the 

condition . If there exists a permuting tri-derivation  such that  is skew-

commuting on , where  is the trace of , then  is commuting. 

Proof:  We have  for all  and . Replacing  by , we obtain  

  

  

  for all .   4.4.31  

We substitute  for  in  4.4.31  we get  

                          for all 

. 

Since  is 3-torsion free, we obtain 

    4.4.32  

for all . 

Again we substituting  for  in  4.4.32  then we get 

   4.4.33  

for all .      

 We substitute  for  in  4.4.33  and compare  4.4.33  with the result to get 

 for all . Replacing  by  and since  is the trace of , we obtain 

 for all . Left-multiplying by  and right-multiplying by  with using Lemma 

1.4.4, we obtain 
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   d y Z  x    d y Z 

x y 

 , , , 0D y y y y

   , ,x y  

D 

 7  

  :D  d

 d D d

    0d x x x d x   x  x x y

         3 , , 3 , , 3 , ,d y x D x x y x D x y y x d x y D x x y y       

         3 , , 3 , , 3 , ,D x y y y x d y x D x x y x D x y y y d y        

   3 , , 3 , , 0y D x x y y D x y y    , ,x y  

x x

       3 , , 3 , , 3 , , 3 , , 0D x y y x D x x y y x D x y y y D x x y      

, ,x y  



       , , , , , , , , 0D x y y x D x x y y x D x y y y D x x y      

, ,x y  

x y x

       , , , , , , , , 0x D y y y y D x y y x y x y D y y y D x y y y         

, , ,x y   

x x

 , , 0D x y y x y   , , ,x y    x y d D

  0d y y y   y y  d y y



 

 

 for all .      4.4.34  

Left-multiplying  4.4.34  by  with using (Lemma 1.4.11 and Remark 3.2.4) gives  

 for all .       4.4.35  

Right-multiplying  4.4.34  by  with using (Lemma 1.4.11 and Remark 3.2.4) and subtracting the 

result with  4.4.35 , we obtain  for all . 

By  Theorem 4.4.3, we complete our proof.  

Theorem 4.4.8:
 

 Let  be a non-commutative 3-torsion free semi-prime ring satisfying the 

condition  and  be a non-zero ideal of . If there exists a permuting tri-derivation 

 such that  is skew-commuting on , where  is the trace of , then  is 

commuting on . 

Proof: Using same method in Theorem 4.4.7, we complete the proof.  

Theorem 4.4.9:
 

 Let  be a non-commutative 3-torsion free semi-prime ring satisfying the 

condition  and  be a non-zero ideal of . If there exists a permuting tri-derivation 

 such that  is skew-centralizing on , where  is the trace of , then  is 

commuting on . 

Proof: Using same method in Theorem 4.4.7, we complete the proof.  
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  0y d y y   , ,y   

 d y

  0d y y  ,y  

 d y

  , 0d y y

   ,y  

 7  

  I 

:D  d I d D d

I

 7  

  I 

:D  d I d D d
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Chapter Five  

Derivations On Modules  

5.1 Jordan Left Derivations On Left Modules 

In this section, we present the concepts of a left module, left derivation on left 

module and we will prove that; for  a ring such that a b c a b c     for all 

, , , ,a b c       , and  a left module, if  with  and   then 

either 0a   or 0x  . It is also shown that there exists a non-zero left derivation :d X , such 

that  

1. If :d X  is a non-zero left derivation and  a left module. Then   is commutative. 

2. If :d X  is a non-zero Jordan left derivation and  is  2-torsion free. Then   is commutative. 

Now, we start by the following definition. 

Definition 5.1.1:  10  Let   be a  ring,  ,X   be an abelian group and X  a left module. An 

additive mapping :d X  is a left derivation if      d a b a d b b d a     and a Jordan left derivation 

if    2d a a a d a   for all ,a b  and  . 

Lemma 5.1.2:  10  Let   be a  ring satisfying    and let X  be a 2-torsion free left module. Let 

:d X  be a Jordan left derivation. Then, for all ,a b  and ,   . 

i.      2 2d a b b a a d b b d a      . 

ii.        3d a b a a a d b a b d a b a d a          . 

iii.          3 3d a b c c b a a c c a d b a b d c c b d a                

         
   b c d a b a d c     . 

iv.        a b b a a d a a a b b a d a          . 

v.          0a b b a d a b a d b b d a          . 

Proof: By Corollary 2.1.11, Preposition 2.1.12, Corollary 2.1.13 and Proposition 2.1.14 the proof is 

complete.  

Lemma 5.1.3:  10  Let   be a  ring satisfying    and let X  be a 2-torsion free module. Then 

there exists a Jordan left derivation :d X  such that 

i.          d a a b a a d b a b b a d a a d a b b a              . 

ii.          3d b a a a a d b b a a b d a a d a b b a              . 

iii.     0a b b a d a b b a       . 

iv.    2 0a a b a b a b a a d b         . 

for all , ,a b c  and ,   . 
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X  0a x  ,a x X 

X 

X



 

 

Proof: Substituting b a  and a b  for b  in Lemma 5.1.2  i , we get  

      2 2d a b a b a a a d b a b a d a               5.1.1  

and          2 2d a a b a b a a d a b a b d a               5.1.2  

Taking  5.1.2 minus  5.1.1 and then using   , we get  

        2 2d a a b b a a a d a b b a a b b a d a                 5.1.3  

Replacing a  by a a  in Lemma 5.1.2  i  and then by   , we get  

      2 4d a a b b a a a a d b b a d a               5.1.4  

By  5.1.3  and  5.1.4  with the condition that X  is 2-torsion free, we have  i  . 

Subtracting  5.1.3  from  5.1.4 and then applying the same condition, we obtain  ii . 

By Lemma 5.1.2  v , we have  

          0a b b a d a b b d a a d b              5.1.5  

Using Lemma 5.1.2  i  in  5.1.5 , we get  

          0a b b a d b a a d b b d a              5.1.6  

Taking  5.1.5  minus  5.1.6 , we obtain  iii . 

By Lemma 5.1.2  i , Lemma 5.1.2  ii  and   , we have  

         3 2d a b b a a b b a a a b a b a b a a d b                  

        2b b a b a b a b b d a         . 

On the other hand, using  iii , we have      0d a b b a a b b a       . 

Thus we have  

       3 2 2 0a a b a b a b a a d b b b a b a b a b b d a                     5.1.7  

From Lemma 5.1.2  iv , 
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   2 0a a b a b a b a a d a               5.1.8  

Replacing a  by a b  in  5.1.8 , we obtain  

       2 2 0a a b a b a b a a d b b b a b a b a b b d a                     5.1.9  

Adding  5.1.7  and  5.1.9 , and then using the condition that X  is 2-torsion free, we get  

    2 0a a b a b a b a a d b               5.1.10  

Hence from  5.1.9  and  5.1.10 , we obtain  iv .  

Theorem 5.1.4:
  10  Let   be a  ring satisfying    and let X  be a left  module. Suppose that 

0a x   with ,a x X   and   implies that either 0a   or 0x  . If there exists a non-zero left 

derivation :d X . Then   is commutative. 

Proof: Since :d X  is a non-zero left derivation, we have  

      d a b a d b b d a    , for all ,a b  and  .    5.1.11  

Replacing b  by b a  in  5.1.11  for all   , we have  

            d a b a a d b a b a d a a b d a a a d b b a d a                  5.1.12  

On the other hand  

           d a b a a b d a a a d b a b d a          .    5.1.13  

Now from  5.1.12  and  5.1.13 , we get     0a b b a d a    . By assumption for each a  either 

 a Z   or   0d a  . But then  Z   and   : 0Kerd m d m    are additive subgroups of  . 

Since  Z   and Kerd  are proper subgroups of  , either  Z    or   Kerd . But 0d  , then 

 Z   . This completes the proof.  

Theorem 5.1.5:
  10  Let   be a  ring satisfying    and let X  be a 2-torsion free left  module. 

Suppose that 0a x   with ,  a x X   and   implies that either 0a   or 0x  . If there exists a 

non-zero Jordan left derivation :d X . Then   is commutative. 

Proof: By Lemma 5.1.3  iii , we have  

     0a b b a d a b b a       , for all ,a b  and ,   . 
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Then by assumption either 0a b b a    or   0d a b b a   . If 0a b b a   , then   is 

commutative. 

If   0d a b b a   , then      2d a b d a b d b a         5.1.14  

In  5.1.14  replace a b for b , for all   , we obtain  

      2d a a b d a a b d a b a       . 

Now by Lemma 5.1.3  i , Lemma 5.1.2  ii  and above relation, we get  

            2d a a b a a d b a b b a d a a d a b b a a a d b                  

     3a b d a b a d a      

      2 2 4d a a b a a d b a b d a       .      5.1.15  

But by Lemma 5.1.3  i , we have  

          2 2 2 2d a a b a a d b a b b a d a a d a b b a               

        2 2 2d a a b a a d b a b b a d a              5.1.16  

Replace  5.1.16  in  5.1.15 , we get  

    2 0a b b a d a    .        5.1.17  

Since X  be a 2-torsion free module then from  5.1.17 , we have    a b b a d a X X      

and     0a b b a d a    , for all , , ,a b    , therefore by assumption either 0a b b a   , then 

  is commutative or   0d a  , a contradiction.  

5.2 Generalized Left Derivations On Left Modules 

In this section, we will define generalized left derivation, generalized Jordan left derivation and we 

will prove that; if   is a  ring satisfying    and X  is  a 2-torsion free left module. Suppose that, 

0a x   with ,a x X   and   implies that either 0a   or 0x  . If :D X  is generalized left 

derivation with associated non-zero Jordan left derivation :d X . Then   is commutative. 

Definition 5.2.1:  9  Let   be a  ring and X  be a left module, an additive mapping :D X  is 

called generalized left derivation if there exists a left derivation :d X , such that 

     D a b a D b b d a     for all ,a b  and  . 
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And D  is called generalized Jordan left derivation if there exists a Jordan left derivation :d X  

such that      D a a a D a a d a     for all ,a   .  

Note: X is faithful if  0X a   forces 0a   for all a . X  is prime if 0m x  , for m  and 

x X implies that either 0x   or 0m X  .  

Lemma 5.2.2:
  9  Suppose that X  is a faithful  prime module. Let ,a b and x X . If (the prime 

 ring)   is 2-torsion free satisfying    and 0a m b m x     , for all m  and , , ,     , then 

0a   or 0b  , or 0.x   

Proof: We use the hypothesis 0a m b m x     , for all , , ,a b m x X   and , , ,     . 

Replacing m  by u v  in the above equation and then putting v m a m b m    , we get 

0a u b m a m b m x a m a m b m b u x                 .                                                      This gives 

0a m a m b m b u x         , for all , , , ,a b m u x X   and , , ,     . If 0x  , we are done.  

Suppose that 0x  . Since X  is faithful and prime, then     0a m a m b m b       , for all 

, ,a b m  and , ,    . Primeness of   gives 0a m a    or 0b m b   , and consequently, 0a   or 

0b  .   

Defining    ,D x a x 
 , for all ,a x  and  , we have  

Lemma 5.2.3:  9  Let   be a  ring which satisfies    and let a  be a fixed element. Then :  

i.  D x  is a derivation. 

ii.      D D x a D x D x a      . 

iii.    D D x D D x    . 

iv.          2D D x y D D x y D x D y x D D y             . 

for all ,x y  and , ,    . 

Proof:  i  For all ,x y , ,    and using   , we have 

            , , ,D x y a x y a x y x a y D x y x D y    
          . 

 ii  By definition, we have

              , , , , ,D D x D a x a a x a a x a x a a D x D x a       
         

 
 for all ,a x  and 

,   . 

 iii  Using   , we get  
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          , , ,D D x D a x a a x a a x x a a x x a a     
           

 
 

           , , ,a a x x a a x x a a a a x D a x D D x   
                

for all ,a x  and ,   . 

 iv By  ii and   , we have  

  D D x y a a x y a x y a a x y a x y a a                   

     2a a x a x a a x a x a a y a x a y y a                   

     2x a a y y a x a a y a y a a y a y a a                   

         2D D x y a x x a a y y a x D D y               

         2D D x y D x D y x D D y          . 

For all ,x y  and , ,    .  

Lemma 5.2.4: Let   be a  ring satisfying    and of characteristic not 3, and :d X  a Jordan left 

derivation, where X  is faithful and prime module. If   0d a  , for some a , then 

   , , , , 0a a b a a b
  

    
   

, for all b  and , ,    . 

Proof: Let a be a fixed element. By Lemma 5.2.3, we have  

      D D x a a x x a a x x a a                5.2.1  

for all x  and ,   . 

Using   in        a b b a a D a a a b b a D a          , for all ,a b  and ,   , we obtain  

        0a a x x a a x x a d a               5.2.2  

for all x  and ,   . 

From  5.2.1  and  5.2.2 , we get 

     0D D x d a    ,         5.2.3  

By Lemma 5.2.3  iv and  5.2.3 , we have  
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        2 0D D x y D x D y d a             5.2.4  

For all ,x y  and , ,    . 

Replacing y  by  D y z   in  5.2.4  and by Lemma 5.2.3  i , we obtain  

               2 0D D x D y z y D z D x D D y z d a               5.2.5  

Using Lemma 5.2.3  iii  in  5.2.5 , and then using  5.2.3 , we get  

               0D D x D y z y D z D D x y D z d a                5.2.6  

Replacing  D z  for z  in  5.2.6 , and then by Lemma 5.2.3  iii  and  5.2.3 , we obtain 

          0D D x D y D z d a             5.2.7  

Replacing  D y  for y  in  5.2.6 , and then by Lemma 5.2.3  iii  in  5.2.7 , we obtain 

          0D D x D D y z d a             5.2.8  

Since  5.2.8  holds for all z , we are forced to conclude that 0d   implies  

       0D D x D D y      

for all ,x y  and , ,    . 

In particular,       0D D b D D b     , For all b  and , ,    . 

This gives    , , , , 0a a b a a b
  

    
    , for all b  and , ,    .  

Theorem 5.2.5:  9  Let   be a  ring satisfying    and X  be a 2-torsion free left module. 

Suppose that, 0a x   with ,  a x X   and   implies that either 0a   or 0x  . If :D X  is 

generalized left derivation with associated non-zero Jordan left derivation :d X . Then   is 

commutative. 

Proof: For all ,a b  and ,   , then we have  

           2D a a b a a D b b d a a a a D b b a d a              

       2D a a b a a D b b a d a             5.2.9  
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On the other hand 

          D a a b D a a b a D a b a b d a           

           a a D b b d a a b d a        

          a a D b a b d a a b d a         

But   satisfying   , then  

       2D a a b a a D b a b d a             5.2.10  

Now from  5.2.9  and  5.2.10 , we get  

    2 , 0a b d a

           5.2.11  

But    2 ,x y d a X X

   (since X  be a left module) and X be a 2-torsion free therefore from 

 5.2.11 , we have    , 0a b d a

  , by assumption then either  , 0a b


  or   0d a  . For each a  

either  a Z   or   0d a  . But then  Z   and   : 0Kerd m d m    are additive subgroups of 

 . Since  Z   and Kerd  are proper subgroups of  , either  Z    or   Kerd . But 0d  , then 

 Z   . This completes the proof.  
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 ملخص البحث

الأولية و حلقات                         , المعرفة على حلقات  تعرضنا في هذا البحث الى مفهوم الاشتقاقات المعرفة على حلقات 

 . شبه الأولية.  كما تم تعميم هذه المفاهيم و دراسة الخصائص الاساسية لكل منها اضافة الى الشروط التي تجعل هذه الحلقات تبديلية 

 اليسرى . و كذلك مفهوم الاشتقاقات على مقاييس  اليسرى على حلقات  و في الختام تم التعرف الى مقاييس 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

117 


